Metamath Proof Explorer


Theorem 1p1e2s

Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025)

Ref Expression
Assertion 1p1e2s ( 1s +s 1s ) = 2s

Proof

Step Hyp Ref Expression
1 0sno 0s No
2 1 elexi 0s ∈ V
3 oveq1 ( 𝑦 = 0s → ( 𝑦 +s 1s ) = ( 0s +s 1s ) )
4 3 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ) ) )
5 2 4 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ) )
6 1sno 1s No
7 addslid ( 1s No → ( 0s +s 1s ) = 1s )
8 6 7 ax-mp ( 0s +s 1s ) = 1s
9 8 eqeq2i ( 𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
10 5 9 bitri ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = 1s )
11 10 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } = { 𝑥𝑥 = 1s }
12 df-sn { 1s } = { 𝑥𝑥 = 1s }
13 11 12 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } = { 1s }
14 oveq2 ( 𝑦 = 0s → ( 1s +s 𝑦 ) = ( 1s +s 0s ) )
15 14 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = ( 1s +s 0s ) ) )
16 2 15 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = ( 1s +s 0s ) )
17 addsrid ( 1s No → ( 1s +s 0s ) = 1s )
18 6 17 ax-mp ( 1s +s 0s ) = 1s
19 18 eqeq2i ( 𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
20 16 19 bitri ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = 1s )
21 20 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } = { 𝑥𝑥 = 1s }
22 21 12 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } = { 1s }
23 13 22 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) = ( { 1s } ∪ { 1s } )
24 unidm ( { 1s } ∪ { 1s } ) = { 1s }
25 23 24 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) = { 1s }
26 rex0 ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s )
27 26 abf { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } = ∅
28 rex0 ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 )
29 28 abf { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } = ∅
30 27 29 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) = ( ∅ ∪ ∅ )
31 unidm ( ∅ ∪ ∅ ) = ∅
32 30 31 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) = ∅
33 25 32 oveq12i ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) ) = ( { 1s } |s ∅ )
34 snelpwi ( 0s No → { 0s } ∈ 𝒫 No )
35 1 34 ax-mp { 0s } ∈ 𝒫 No
36 nulssgt ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ )
37 35 36 ax-mp { 0s } <<s ∅
38 37 a1i ( ⊤ → { 0s } <<s ∅ )
39 df-1s 1s = ( { 0s } |s ∅ )
40 39 a1i ( ⊤ → 1s = ( { 0s } |s ∅ ) )
41 38 38 40 40 addsunif ( ⊤ → ( 1s +s 1s ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) ) )
42 41 mptru ( 1s +s 1s ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) )
43 df-2s 2s = ( { 1s } |s ∅ )
44 33 42 43 3eqtr4i ( 1s +s 1s ) = 2s