Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
⊢ 0s ∈ No |
2 |
1
|
elexi |
⊢ 0s ∈ V |
3 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 +s 1s ) = ( 0s +s 1s ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ) ) ) |
5 |
2 4
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ) ) |
6 |
|
1sno |
⊢ 1s ∈ No |
7 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
8 |
6 7
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
9 |
8
|
eqeq2i |
⊢ ( 𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s ) |
10 |
5 9
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) ↔ 𝑥 = 1s ) |
11 |
10
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } = { 𝑥 ∣ 𝑥 = 1s } |
12 |
|
df-sn |
⊢ { 1s } = { 𝑥 ∣ 𝑥 = 1s } |
13 |
11 12
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } = { 1s } |
14 |
|
oveq2 |
⊢ ( 𝑦 = 0s → ( 1s +s 𝑦 ) = ( 1s +s 0s ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = ( 1s +s 0s ) ) ) |
16 |
2 15
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = ( 1s +s 0s ) ) |
17 |
|
addsrid |
⊢ ( 1s ∈ No → ( 1s +s 0s ) = 1s ) |
18 |
6 17
|
ax-mp |
⊢ ( 1s +s 0s ) = 1s |
19 |
18
|
eqeq2i |
⊢ ( 𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s ) |
20 |
16 19
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) ↔ 𝑥 = 1s ) |
21 |
20
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = 1s } |
22 |
21 12
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } = { 1s } |
23 |
13 22
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) = ( { 1s } ∪ { 1s } ) |
24 |
|
unidm |
⊢ ( { 1s } ∪ { 1s } ) = { 1s } |
25 |
23 24
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) = { 1s } |
26 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) |
27 |
26
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } = ∅ |
28 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) |
29 |
28
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } = ∅ |
30 |
27 29
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) = ( ∅ ∪ ∅ ) |
31 |
|
unidm |
⊢ ( ∅ ∪ ∅ ) = ∅ |
32 |
30 31
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) = ∅ |
33 |
25 32
|
oveq12i |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) ) = ( { 1s } |s ∅ ) |
34 |
|
snelpwi |
⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) |
35 |
1 34
|
ax-mp |
⊢ { 0s } ∈ 𝒫 No |
36 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
37 |
35 36
|
ax-mp |
⊢ { 0s } <<s ∅ |
38 |
37
|
a1i |
⊢ ( ⊤ → { 0s } <<s ∅ ) |
39 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
40 |
39
|
a1i |
⊢ ( ⊤ → 1s = ( { 0s } |s ∅ ) ) |
41 |
38 38 40 40
|
addsunif |
⊢ ( ⊤ → ( 1s +s 1s ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) ) ) |
42 |
41
|
mptru |
⊢ ( 1s +s 1s ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 1s +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 1s ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦 ) } ) ) |
43 |
|
df-2s |
⊢ 2s = ( { 1s } |s ∅ ) |
44 |
33 42 43
|
3eqtr4i |
⊢ ( 1s +s 1s ) = 2s |