Metamath Proof Explorer


Theorem 1p1e2s

Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025)

Ref Expression
Assertion 1p1e2s Could not format assertion : No typesetting found for |- ( 1s +s 1s ) = 2s with typecode |-

Proof

Step Hyp Ref Expression
1 0sno 0 s No
2 1 elexi 0 s V
3 oveq1 y = 0 s y + s 1 s = 0 s + s 1 s
4 3 eqeq2d y = 0 s x = y + s 1 s x = 0 s + s 1 s
5 2 4 rexsn y 0 s x = y + s 1 s x = 0 s + s 1 s
6 1sno 1 s No
7 addslid 1 s No 0 s + s 1 s = 1 s
8 6 7 ax-mp 0 s + s 1 s = 1 s
9 8 eqeq2i x = 0 s + s 1 s x = 1 s
10 5 9 bitri y 0 s x = y + s 1 s x = 1 s
11 10 abbii x | y 0 s x = y + s 1 s = x | x = 1 s
12 df-sn 1 s = x | x = 1 s
13 11 12 eqtr4i x | y 0 s x = y + s 1 s = 1 s
14 oveq2 y = 0 s 1 s + s y = 1 s + s 0 s
15 14 eqeq2d y = 0 s x = 1 s + s y x = 1 s + s 0 s
16 2 15 rexsn y 0 s x = 1 s + s y x = 1 s + s 0 s
17 addsrid 1 s No 1 s + s 0 s = 1 s
18 6 17 ax-mp 1 s + s 0 s = 1 s
19 18 eqeq2i x = 1 s + s 0 s x = 1 s
20 16 19 bitri y 0 s x = 1 s + s y x = 1 s
21 20 abbii x | y 0 s x = 1 s + s y = x | x = 1 s
22 21 12 eqtr4i x | y 0 s x = 1 s + s y = 1 s
23 13 22 uneq12i x | y 0 s x = y + s 1 s x | y 0 s x = 1 s + s y = 1 s 1 s
24 unidm 1 s 1 s = 1 s
25 23 24 eqtri x | y 0 s x = y + s 1 s x | y 0 s x = 1 s + s y = 1 s
26 rex0 ¬ y x = y + s 1 s
27 26 abf x | y x = y + s 1 s =
28 rex0 ¬ y x = 1 s + s y
29 28 abf x | y x = 1 s + s y =
30 27 29 uneq12i x | y x = y + s 1 s x | y x = 1 s + s y =
31 unidm =
32 30 31 eqtri x | y x = y + s 1 s x | y x = 1 s + s y =
33 25 32 oveq12i x | y 0 s x = y + s 1 s x | y 0 s x = 1 s + s y | s x | y x = y + s 1 s x | y x = 1 s + s y = 1 s | s
34 snelpwi 0 s No 0 s 𝒫 No
35 1 34 ax-mp 0 s 𝒫 No
36 nulssgt 0 s 𝒫 No 0 s s
37 35 36 ax-mp 0 s s
38 37 a1i 0 s s
39 df-1s 1 s = 0 s | s
40 39 a1i 1 s = 0 s | s
41 38 38 40 40 addsunif 1 s + s 1 s = x | y 0 s x = y + s 1 s x | y 0 s x = 1 s + s y | s x | y x = y + s 1 s x | y x = 1 s + s y
42 41 mptru 1 s + s 1 s = x | y 0 s x = y + s 1 s x | y 0 s x = 1 s + s y | s x | y x = y + s 1 s x | y x = 1 s + s y
43 df-2s Could not format 2s = ( { 1s } |s (/) ) : No typesetting found for |- 2s = ( { 1s } |s (/) ) with typecode |-
44 33 42 43 3eqtr4i Could not format ( 1s +s 1s ) = 2s : No typesetting found for |- ( 1s +s 1s ) = 2s with typecode |-