Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
|- 0s e. No |
2 |
1
|
elexi |
|- 0s e. _V |
3 |
|
oveq1 |
|- ( y = 0s -> ( y +s 1s ) = ( 0s +s 1s ) ) |
4 |
3
|
eqeq2d |
|- ( y = 0s -> ( x = ( y +s 1s ) <-> x = ( 0s +s 1s ) ) ) |
5 |
2 4
|
rexsn |
|- ( E. y e. { 0s } x = ( y +s 1s ) <-> x = ( 0s +s 1s ) ) |
6 |
|
1sno |
|- 1s e. No |
7 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
8 |
6 7
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
9 |
8
|
eqeq2i |
|- ( x = ( 0s +s 1s ) <-> x = 1s ) |
10 |
5 9
|
bitri |
|- ( E. y e. { 0s } x = ( y +s 1s ) <-> x = 1s ) |
11 |
10
|
abbii |
|- { x | E. y e. { 0s } x = ( y +s 1s ) } = { x | x = 1s } |
12 |
|
df-sn |
|- { 1s } = { x | x = 1s } |
13 |
11 12
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( y +s 1s ) } = { 1s } |
14 |
|
oveq2 |
|- ( y = 0s -> ( 1s +s y ) = ( 1s +s 0s ) ) |
15 |
14
|
eqeq2d |
|- ( y = 0s -> ( x = ( 1s +s y ) <-> x = ( 1s +s 0s ) ) ) |
16 |
2 15
|
rexsn |
|- ( E. y e. { 0s } x = ( 1s +s y ) <-> x = ( 1s +s 0s ) ) |
17 |
|
addsrid |
|- ( 1s e. No -> ( 1s +s 0s ) = 1s ) |
18 |
6 17
|
ax-mp |
|- ( 1s +s 0s ) = 1s |
19 |
18
|
eqeq2i |
|- ( x = ( 1s +s 0s ) <-> x = 1s ) |
20 |
16 19
|
bitri |
|- ( E. y e. { 0s } x = ( 1s +s y ) <-> x = 1s ) |
21 |
20
|
abbii |
|- { x | E. y e. { 0s } x = ( 1s +s y ) } = { x | x = 1s } |
22 |
21 12
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( 1s +s y ) } = { 1s } |
23 |
13 22
|
uneq12i |
|- ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) = ( { 1s } u. { 1s } ) |
24 |
|
unidm |
|- ( { 1s } u. { 1s } ) = { 1s } |
25 |
23 24
|
eqtri |
|- ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) = { 1s } |
26 |
|
rex0 |
|- -. E. y e. (/) x = ( y +s 1s ) |
27 |
26
|
abf |
|- { x | E. y e. (/) x = ( y +s 1s ) } = (/) |
28 |
|
rex0 |
|- -. E. y e. (/) x = ( 1s +s y ) |
29 |
28
|
abf |
|- { x | E. y e. (/) x = ( 1s +s y ) } = (/) |
30 |
27 29
|
uneq12i |
|- ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) = ( (/) u. (/) ) |
31 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
32 |
30 31
|
eqtri |
|- ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) = (/) |
33 |
25 32
|
oveq12i |
|- ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) = ( { 1s } |s (/) ) |
34 |
|
snelpwi |
|- ( 0s e. No -> { 0s } e. ~P No ) |
35 |
1 34
|
ax-mp |
|- { 0s } e. ~P No |
36 |
|
nulssgt |
|- ( { 0s } e. ~P No -> { 0s } < |
37 |
35 36
|
ax-mp |
|- { 0s } < |
38 |
37
|
a1i |
|- ( T. -> { 0s } < |
39 |
|
df-1s |
|- 1s = ( { 0s } |s (/) ) |
40 |
39
|
a1i |
|- ( T. -> 1s = ( { 0s } |s (/) ) ) |
41 |
38 38 40 40
|
addsunif |
|- ( T. -> ( 1s +s 1s ) = ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) ) |
42 |
41
|
mptru |
|- ( 1s +s 1s ) = ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) |
43 |
|
df-2s |
|- 2s = ( { 1s } |s (/) ) |
44 |
33 42 43
|
3eqtr4i |
|- ( 1s +s 1s ) = 2s |