| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0sno |
|- 0s e. No |
| 2 |
1
|
elexi |
|- 0s e. _V |
| 3 |
|
oveq1 |
|- ( y = 0s -> ( y +s 1s ) = ( 0s +s 1s ) ) |
| 4 |
3
|
eqeq2d |
|- ( y = 0s -> ( x = ( y +s 1s ) <-> x = ( 0s +s 1s ) ) ) |
| 5 |
2 4
|
rexsn |
|- ( E. y e. { 0s } x = ( y +s 1s ) <-> x = ( 0s +s 1s ) ) |
| 6 |
|
1sno |
|- 1s e. No |
| 7 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
| 8 |
6 7
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
| 9 |
8
|
eqeq2i |
|- ( x = ( 0s +s 1s ) <-> x = 1s ) |
| 10 |
5 9
|
bitri |
|- ( E. y e. { 0s } x = ( y +s 1s ) <-> x = 1s ) |
| 11 |
10
|
abbii |
|- { x | E. y e. { 0s } x = ( y +s 1s ) } = { x | x = 1s } |
| 12 |
|
df-sn |
|- { 1s } = { x | x = 1s } |
| 13 |
11 12
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( y +s 1s ) } = { 1s } |
| 14 |
|
oveq2 |
|- ( y = 0s -> ( 1s +s y ) = ( 1s +s 0s ) ) |
| 15 |
14
|
eqeq2d |
|- ( y = 0s -> ( x = ( 1s +s y ) <-> x = ( 1s +s 0s ) ) ) |
| 16 |
2 15
|
rexsn |
|- ( E. y e. { 0s } x = ( 1s +s y ) <-> x = ( 1s +s 0s ) ) |
| 17 |
|
addsrid |
|- ( 1s e. No -> ( 1s +s 0s ) = 1s ) |
| 18 |
6 17
|
ax-mp |
|- ( 1s +s 0s ) = 1s |
| 19 |
18
|
eqeq2i |
|- ( x = ( 1s +s 0s ) <-> x = 1s ) |
| 20 |
16 19
|
bitri |
|- ( E. y e. { 0s } x = ( 1s +s y ) <-> x = 1s ) |
| 21 |
20
|
abbii |
|- { x | E. y e. { 0s } x = ( 1s +s y ) } = { x | x = 1s } |
| 22 |
21 12
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( 1s +s y ) } = { 1s } |
| 23 |
13 22
|
uneq12i |
|- ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) = ( { 1s } u. { 1s } ) |
| 24 |
|
unidm |
|- ( { 1s } u. { 1s } ) = { 1s } |
| 25 |
23 24
|
eqtri |
|- ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) = { 1s } |
| 26 |
|
rex0 |
|- -. E. y e. (/) x = ( y +s 1s ) |
| 27 |
26
|
abf |
|- { x | E. y e. (/) x = ( y +s 1s ) } = (/) |
| 28 |
|
rex0 |
|- -. E. y e. (/) x = ( 1s +s y ) |
| 29 |
28
|
abf |
|- { x | E. y e. (/) x = ( 1s +s y ) } = (/) |
| 30 |
27 29
|
uneq12i |
|- ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) = ( (/) u. (/) ) |
| 31 |
|
unidm |
|- ( (/) u. (/) ) = (/) |
| 32 |
30 31
|
eqtri |
|- ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) = (/) |
| 33 |
25 32
|
oveq12i |
|- ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) = ( { 1s } |s (/) ) |
| 34 |
|
snelpwi |
|- ( 0s e. No -> { 0s } e. ~P No ) |
| 35 |
1 34
|
ax-mp |
|- { 0s } e. ~P No |
| 36 |
|
nulssgt |
|- ( { 0s } e. ~P No -> { 0s } < |
| 37 |
35 36
|
ax-mp |
|- { 0s } < |
| 38 |
37
|
a1i |
|- ( T. -> { 0s } < |
| 39 |
|
df-1s |
|- 1s = ( { 0s } |s (/) ) |
| 40 |
39
|
a1i |
|- ( T. -> 1s = ( { 0s } |s (/) ) ) |
| 41 |
38 38 40 40
|
addsunif |
|- ( T. -> ( 1s +s 1s ) = ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) ) |
| 42 |
41
|
mptru |
|- ( 1s +s 1s ) = ( ( { x | E. y e. { 0s } x = ( y +s 1s ) } u. { x | E. y e. { 0s } x = ( 1s +s y ) } ) |s ( { x | E. y e. (/) x = ( y +s 1s ) } u. { x | E. y e. (/) x = ( 1s +s y ) } ) ) |
| 43 |
|
df-2s |
|- 2s = ( { 1s } |s (/) ) |
| 44 |
33 42 43
|
3eqtr4i |
|- ( 1s +s 1s ) = 2s |