Step |
Hyp |
Ref |
Expression |
1 |
|
1p1e2s |
|- ( 1s +s 1s ) = 2s |
2 |
1
|
oveq1i |
|- ( ( 1s +s 1s ) x.s A ) = ( 2s x.s A ) |
3 |
2
|
eqcomi |
|- ( 2s x.s A ) = ( ( 1s +s 1s ) x.s A ) |
4 |
|
1sno |
|- 1s e. No |
5 |
4
|
a1i |
|- ( A e. No -> 1s e. No ) |
6 |
|
id |
|- ( A e. No -> A e. No ) |
7 |
5 5 6
|
addsdird |
|- ( A e. No -> ( ( 1s +s 1s ) x.s A ) = ( ( 1s x.s A ) +s ( 1s x.s A ) ) ) |
8 |
|
mulslid |
|- ( A e. No -> ( 1s x.s A ) = A ) |
9 |
8 8
|
oveq12d |
|- ( A e. No -> ( ( 1s x.s A ) +s ( 1s x.s A ) ) = ( A +s A ) ) |
10 |
7 9
|
eqtrd |
|- ( A e. No -> ( ( 1s +s 1s ) x.s A ) = ( A +s A ) ) |
11 |
3 10
|
eqtrid |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |