Metamath Proof Explorer


Theorem no2times

Description: Version of 2times for surreal numbers. (Contributed by Scott Fenton, 23-Jul-2025)

Ref Expression
Assertion no2times ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 1p1e2s ( 1s +s 1s ) = 2s
2 1 oveq1i ( ( 1s +s 1s ) ·s 𝐴 ) = ( 2s ·s 𝐴 )
3 2 eqcomi ( 2s ·s 𝐴 ) = ( ( 1s +s 1s ) ·s 𝐴 )
4 1sno 1s No
5 4 a1i ( 𝐴 No → 1s No )
6 id ( 𝐴 No 𝐴 No )
7 5 5 6 addsdird ( 𝐴 No → ( ( 1s +s 1s ) ·s 𝐴 ) = ( ( 1s ·s 𝐴 ) +s ( 1s ·s 𝐴 ) ) )
8 mulslid ( 𝐴 No → ( 1s ·s 𝐴 ) = 𝐴 )
9 8 8 oveq12d ( 𝐴 No → ( ( 1s ·s 𝐴 ) +s ( 1s ·s 𝐴 ) ) = ( 𝐴 +s 𝐴 ) )
10 7 9 eqtrd ( 𝐴 No → ( ( 1s +s 1s ) ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
11 3 10 eqtrid ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )