Step |
Hyp |
Ref |
Expression |
1 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
2 |
1
|
oveq1i |
⊢ ( ( 1s +s 1s ) ·s 𝐴 ) = ( 2s ·s 𝐴 ) |
3 |
2
|
eqcomi |
⊢ ( 2s ·s 𝐴 ) = ( ( 1s +s 1s ) ·s 𝐴 ) |
4 |
|
1sno |
⊢ 1s ∈ No |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ No → 1s ∈ No ) |
6 |
|
id |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) |
7 |
5 5 6
|
addsdird |
⊢ ( 𝐴 ∈ No → ( ( 1s +s 1s ) ·s 𝐴 ) = ( ( 1s ·s 𝐴 ) +s ( 1s ·s 𝐴 ) ) ) |
8 |
|
mulslid |
⊢ ( 𝐴 ∈ No → ( 1s ·s 𝐴 ) = 𝐴 ) |
9 |
8 8
|
oveq12d |
⊢ ( 𝐴 ∈ No → ( ( 1s ·s 𝐴 ) +s ( 1s ·s 𝐴 ) ) = ( 𝐴 +s 𝐴 ) ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝐴 ∈ No → ( ( 1s +s 1s ) ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
11 |
3 10
|
eqtrid |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |