Description: Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2nns | ⊢ 2s ∈ ℕs | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1p1e2s | ⊢ ( 1s +s 1s ) = 2s | |
| 2 | 1nns | ⊢ 1s ∈ ℕs | |
| 3 | peano2nns | ⊢ ( 1s ∈ ℕs → ( 1s +s 1s ) ∈ ℕs ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 1s +s 1s ) ∈ ℕs | 
| 5 | 1 4 | eqeltrri | ⊢ 2s ∈ ℕs |