Metamath Proof Explorer


Theorem 2nns

Description: Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025)

Ref Expression
Assertion 2nns 2s ∈ ℕs

Proof

Step Hyp Ref Expression
1 1p1e2s ( 1s +s 1s ) = 2s
2 1nns 1s ∈ ℕs
3 peano2nns ( 1s ∈ ℕs → ( 1s +s 1s ) ∈ ℕs )
4 2 3 ax-mp ( 1s +s 1s ) ∈ ℕs
5 1 4 eqeltrri 2s ∈ ℕs