Description: Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 2nns | ⊢ 2s ∈ ℕs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1e2s | ⊢ ( 1s +s 1s ) = 2s | |
2 | 1nns | ⊢ 1s ∈ ℕs | |
3 | peano2nns | ⊢ ( 1s ∈ ℕs → ( 1s +s 1s ) ∈ ℕs ) | |
4 | 2 3 | ax-mp | ⊢ ( 1s +s 1s ) ∈ ℕs |
5 | 1 4 | eqeltrri | ⊢ 2s ∈ ℕs |