Description: Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 2nns | |- 2s e. NN_s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1e2s | |- ( 1s +s 1s ) = 2s |
|
2 | 1nns | |- 1s e. NN_s |
|
3 | peano2nns | |- ( 1s e. NN_s -> ( 1s +s 1s ) e. NN_s ) |
|
4 | 2 3 | ax-mp | |- ( 1s +s 1s ) e. NN_s |
5 | 1 4 | eqeltrri | |- 2s e. NN_s |