Description: Surreal two is a surreal natural. (Contributed by Scott Fenton, 23-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2nns | |- 2s e. NN_s | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1p1e2s | |- ( 1s +s 1s ) = 2s | |
| 2 | 1nns | |- 1s e. NN_s | |
| 3 | peano2nns | |- ( 1s e. NN_s -> ( 1s +s 1s ) e. NN_s ) | |
| 4 | 2 3 | ax-mp | |- ( 1s +s 1s ) e. NN_s | 
| 5 | 1 4 | eqeltrri | |- 2s e. NN_s |