Step |
Hyp |
Ref |
Expression |
1 |
|
df1st2 |
|- { <. <. x , y >. , z >. | z = x } = ( 1st |` ( _V X. _V ) ) |
2 |
1
|
reseq1i |
|- ( { <. <. x , y >. , z >. | z = x } |` ( A X. B ) ) = ( ( 1st |` ( _V X. _V ) ) |` ( A X. B ) ) |
3 |
|
resoprab |
|- ( { <. <. x , y >. , z >. | z = x } |` ( A X. B ) ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = x ) } |
4 |
|
resres |
|- ( ( 1st |` ( _V X. _V ) ) |` ( A X. B ) ) = ( 1st |` ( ( _V X. _V ) i^i ( A X. B ) ) ) |
5 |
|
incom |
|- ( ( A X. B ) i^i ( _V X. _V ) ) = ( ( _V X. _V ) i^i ( A X. B ) ) |
6 |
|
xpss |
|- ( A X. B ) C_ ( _V X. _V ) |
7 |
|
df-ss |
|- ( ( A X. B ) C_ ( _V X. _V ) <-> ( ( A X. B ) i^i ( _V X. _V ) ) = ( A X. B ) ) |
8 |
6 7
|
mpbi |
|- ( ( A X. B ) i^i ( _V X. _V ) ) = ( A X. B ) |
9 |
5 8
|
eqtr3i |
|- ( ( _V X. _V ) i^i ( A X. B ) ) = ( A X. B ) |
10 |
9
|
reseq2i |
|- ( 1st |` ( ( _V X. _V ) i^i ( A X. B ) ) ) = ( 1st |` ( A X. B ) ) |
11 |
4 10
|
eqtri |
|- ( ( 1st |` ( _V X. _V ) ) |` ( A X. B ) ) = ( 1st |` ( A X. B ) ) |
12 |
2 3 11
|
3eqtr3ri |
|- ( 1st |` ( A X. B ) ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = x ) } |
13 |
|
df-mpo |
|- ( x e. A , y e. B |-> x ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = x ) } |
14 |
12 13
|
eqtr4i |
|- ( 1st |` ( A X. B ) ) = ( x e. A , y e. B |-> x ) |