Metamath Proof Explorer


Theorem df1stres

Description: Definition for a restriction of the 1st (first member of an ordered pair) function. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion df1stres 1stA×B=xA,yBx

Proof

Step Hyp Ref Expression
1 df1st2 xyz|z=x=1stV×V
2 1 reseq1i xyz|z=xA×B=1stV×VA×B
3 resoprab xyz|z=xA×B=xyz|xAyBz=x
4 resres 1stV×VA×B=1stV×VA×B
5 incom A×BV×V=V×VA×B
6 xpss A×BV×V
7 df-ss A×BV×VA×BV×V=A×B
8 6 7 mpbi A×BV×V=A×B
9 5 8 eqtr3i V×VA×B=A×B
10 9 reseq2i 1stV×VA×B=1stA×B
11 4 10 eqtri 1stV×VA×B=1stA×B
12 2 3 11 3eqtr3ri 1stA×B=xyz|xAyBz=x
13 df-mpo xA,yBx=xyz|xAyBz=x
14 12 13 eqtr4i 1stA×B=xA,yBx