Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeven3 | |- Even = { z e. ZZ | ( z mod 2 ) = 0 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-even |  |-  Even = { z e. ZZ | ( z / 2 ) e. ZZ } | |
| 2 | zre | |- ( z e. ZZ -> z e. RR ) | |
| 3 | 2rp | |- 2 e. RR+ | |
| 4 | mod0 | |- ( ( z e. RR /\ 2 e. RR+ ) -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) ) | |
| 5 | 2 3 4 | sylancl | |- ( z e. ZZ -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) ) | 
| 6 | 5 | bicomd | |- ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> ( z mod 2 ) = 0 ) ) | 
| 7 | 6 | rabbiia |  |-  { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | ( z mod 2 ) = 0 } | 
| 8 | 1 7 | eqtri |  |-  Even = { z e. ZZ | ( z mod 2 ) = 0 } |