Metamath Proof Explorer


Theorem dfeven3

Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfeven3
|- Even = { z e. ZZ | ( z mod 2 ) = 0 }

Proof

Step Hyp Ref Expression
1 df-even
 |-  Even = { z e. ZZ | ( z / 2 ) e. ZZ }
2 zre
 |-  ( z e. ZZ -> z e. RR )
3 2rp
 |-  2 e. RR+
4 mod0
 |-  ( ( z e. RR /\ 2 e. RR+ ) -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) )
5 2 3 4 sylancl
 |-  ( z e. ZZ -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) )
6 5 bicomd
 |-  ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> ( z mod 2 ) = 0 ) )
7 6 rabbiia
 |-  { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | ( z mod 2 ) = 0 }
8 1 7 eqtri
 |-  Even = { z e. ZZ | ( z mod 2 ) = 0 }