Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfeven3 | |- Even = { z e. ZZ | ( z mod 2 ) = 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-even | |- Even = { z e. ZZ | ( z / 2 ) e. ZZ } |
|
2 | zre | |- ( z e. ZZ -> z e. RR ) |
|
3 | 2rp | |- 2 e. RR+ |
|
4 | mod0 | |- ( ( z e. RR /\ 2 e. RR+ ) -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) ) |
|
5 | 2 3 4 | sylancl | |- ( z e. ZZ -> ( ( z mod 2 ) = 0 <-> ( z / 2 ) e. ZZ ) ) |
6 | 5 | bicomd | |- ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> ( z mod 2 ) = 0 ) ) |
7 | 6 | rabbiia | |- { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | ( z mod 2 ) = 0 } |
8 | 1 7 | eqtri | |- Even = { z e. ZZ | ( z mod 2 ) = 0 } |