Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd2 |
|- Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } |
2 |
|
peano2zm |
|- ( z e. ZZ -> ( z - 1 ) e. ZZ ) |
3 |
2
|
zred |
|- ( z e. ZZ -> ( z - 1 ) e. RR ) |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
|
mod0 |
|- ( ( ( z - 1 ) e. RR /\ 2 e. RR+ ) -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( ( z - 1 ) / 2 ) e. ZZ ) ) |
6 |
3 4 5
|
sylancl |
|- ( z e. ZZ -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( ( z - 1 ) / 2 ) e. ZZ ) ) |
7 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
8 |
|
2re |
|- 2 e. RR |
9 |
8
|
a1i |
|- ( z e. ZZ -> 2 e. RR ) |
10 |
|
1lt2 |
|- 1 < 2 |
11 |
10
|
a1i |
|- ( z e. ZZ -> 1 < 2 ) |
12 |
|
m1mod0mod1 |
|- ( ( z e. RR /\ 2 e. RR /\ 1 < 2 ) -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( z mod 2 ) = 1 ) ) |
13 |
7 9 11 12
|
syl3anc |
|- ( z e. ZZ -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( z mod 2 ) = 1 ) ) |
14 |
6 13
|
bitr3d |
|- ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> ( z mod 2 ) = 1 ) ) |
15 |
14
|
rabbiia |
|- { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | ( z mod 2 ) = 1 } |
16 |
1 15
|
eqtri |
|- Odd = { z e. ZZ | ( z mod 2 ) = 1 } |