| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfodd2 |  |-  Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } | 
						
							| 2 |  | peano2zm |  |-  ( z e. ZZ -> ( z - 1 ) e. ZZ ) | 
						
							| 3 | 2 | zred |  |-  ( z e. ZZ -> ( z - 1 ) e. RR ) | 
						
							| 4 |  | 2rp |  |-  2 e. RR+ | 
						
							| 5 |  | mod0 |  |-  ( ( ( z - 1 ) e. RR /\ 2 e. RR+ ) -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( ( z - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( z e. ZZ -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( ( z - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 7 |  | zre |  |-  ( z e. ZZ -> z e. RR ) | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( z e. ZZ -> 2 e. RR ) | 
						
							| 10 |  | 1lt2 |  |-  1 < 2 | 
						
							| 11 | 10 | a1i |  |-  ( z e. ZZ -> 1 < 2 ) | 
						
							| 12 |  | m1mod0mod1 |  |-  ( ( z e. RR /\ 2 e. RR /\ 1 < 2 ) -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( z mod 2 ) = 1 ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc |  |-  ( z e. ZZ -> ( ( ( z - 1 ) mod 2 ) = 0 <-> ( z mod 2 ) = 1 ) ) | 
						
							| 14 | 6 13 | bitr3d |  |-  ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> ( z mod 2 ) = 1 ) ) | 
						
							| 15 | 14 | rabbiia |  |-  { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | ( z mod 2 ) = 1 } | 
						
							| 16 | 1 15 | eqtri |  |-  Odd = { z e. ZZ | ( z mod 2 ) = 1 } |