| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfodd4 |  |-  Odd = { z e. ZZ | ( z mod 2 ) = 1 } | 
						
							| 2 |  | elmod2 |  |-  ( z e. ZZ -> ( z mod 2 ) e. { 0 , 1 } ) | 
						
							| 3 |  | prcom |  |-  { 0 , 1 } = { 1 , 0 } | 
						
							| 4 | 3 | eleq2i |  |-  ( ( z mod 2 ) e. { 0 , 1 } <-> ( z mod 2 ) e. { 1 , 0 } ) | 
						
							| 5 | 4 | biimpi |  |-  ( ( z mod 2 ) e. { 0 , 1 } -> ( z mod 2 ) e. { 1 , 0 } ) | 
						
							| 6 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 7 |  | elprneb |  |-  ( ( ( z mod 2 ) e. { 1 , 0 } /\ 1 =/= 0 ) -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) | 
						
							| 8 | 5 6 7 | sylancl |  |-  ( ( z mod 2 ) e. { 0 , 1 } -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( z e. ZZ -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) | 
						
							| 10 | 9 | rabbiia |  |-  { z e. ZZ | ( z mod 2 ) = 1 } = { z e. ZZ | ( z mod 2 ) =/= 0 } | 
						
							| 11 | 1 10 | eqtri |  |-  Odd = { z e. ZZ | ( z mod 2 ) =/= 0 } |