Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd4 |
|- Odd = { z e. ZZ | ( z mod 2 ) = 1 } |
2 |
|
elmod2 |
|- ( z e. ZZ -> ( z mod 2 ) e. { 0 , 1 } ) |
3 |
|
prcom |
|- { 0 , 1 } = { 1 , 0 } |
4 |
3
|
eleq2i |
|- ( ( z mod 2 ) e. { 0 , 1 } <-> ( z mod 2 ) e. { 1 , 0 } ) |
5 |
4
|
biimpi |
|- ( ( z mod 2 ) e. { 0 , 1 } -> ( z mod 2 ) e. { 1 , 0 } ) |
6 |
|
ax-1ne0 |
|- 1 =/= 0 |
7 |
|
elprneb |
|- ( ( ( z mod 2 ) e. { 1 , 0 } /\ 1 =/= 0 ) -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) |
8 |
5 6 7
|
sylancl |
|- ( ( z mod 2 ) e. { 0 , 1 } -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) |
9 |
2 8
|
syl |
|- ( z e. ZZ -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) ) |
10 |
9
|
rabbiia |
|- { z e. ZZ | ( z mod 2 ) = 1 } = { z e. ZZ | ( z mod 2 ) =/= 0 } |
11 |
1 10
|
eqtri |
|- Odd = { z e. ZZ | ( z mod 2 ) =/= 0 } |