Metamath Proof Explorer


Theorem dfodd5

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd5
|- Odd = { z e. ZZ | ( z mod 2 ) =/= 0 }

Proof

Step Hyp Ref Expression
1 dfodd4
 |-  Odd = { z e. ZZ | ( z mod 2 ) = 1 }
2 elmod2
 |-  ( z e. ZZ -> ( z mod 2 ) e. { 0 , 1 } )
3 prcom
 |-  { 0 , 1 } = { 1 , 0 }
4 3 eleq2i
 |-  ( ( z mod 2 ) e. { 0 , 1 } <-> ( z mod 2 ) e. { 1 , 0 } )
5 4 biimpi
 |-  ( ( z mod 2 ) e. { 0 , 1 } -> ( z mod 2 ) e. { 1 , 0 } )
6 ax-1ne0
 |-  1 =/= 0
7 elprneb
 |-  ( ( ( z mod 2 ) e. { 1 , 0 } /\ 1 =/= 0 ) -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) )
8 5 6 7 sylancl
 |-  ( ( z mod 2 ) e. { 0 , 1 } -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) )
9 2 8 syl
 |-  ( z e. ZZ -> ( ( z mod 2 ) = 1 <-> ( z mod 2 ) =/= 0 ) )
10 9 rabbiia
 |-  { z e. ZZ | ( z mod 2 ) = 1 } = { z e. ZZ | ( z mod 2 ) =/= 0 }
11 1 10 eqtri
 |-  Odd = { z e. ZZ | ( z mod 2 ) =/= 0 }