Metamath Proof Explorer


Theorem dfodd5

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd5 Odd = z | z mod 2 0

Proof

Step Hyp Ref Expression
1 dfodd4 Odd = z | z mod 2 = 1
2 elmod2 z z mod 2 0 1
3 prcom 0 1 = 1 0
4 3 eleq2i z mod 2 0 1 z mod 2 1 0
5 4 biimpi z mod 2 0 1 z mod 2 1 0
6 ax-1ne0 1 0
7 elprneb z mod 2 1 0 1 0 z mod 2 = 1 z mod 2 0
8 5 6 7 sylancl z mod 2 0 1 z mod 2 = 1 z mod 2 0
9 2 8 syl z z mod 2 = 1 z mod 2 0
10 9 rabbiia z | z mod 2 = 1 = z | z mod 2 0
11 1 10 eqtri Odd = z | z mod 2 0