Metamath Proof Explorer


Theorem elprneb

Description: An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion elprneb ABCBCA=BAC

Proof

Step Hyp Ref Expression
1 elpri ABCA=BA=C
2 neeq1 B=ABCAC
3 2 eqcoms A=BBCAC
4 pm5.1 A=BACA=BAC
5 4 ex A=BACA=BAC
6 3 5 sylbid A=BBCA=BAC
7 neeq2 A=CBABC
8 nesym BA¬A=B
9 pm5.1 A=C¬A=BA=C¬A=B
10 8 9 sylan2b A=CBAA=C¬A=B
11 10 necon2abid A=CBAA=BAC
12 11 ex A=CBAA=BAC
13 7 12 sylbird A=CBCA=BAC
14 6 13 jaoi A=BA=CBCA=BAC
15 1 14 syl ABCBCA=BAC
16 15 imp ABCBCA=BAC