| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri | ⊢ ( 𝐴  ∈  { 𝐵 ,  𝐶 }  →  ( 𝐴  =  𝐵  ∨  𝐴  =  𝐶 ) ) | 
						
							| 2 |  | neeq1 | ⊢ ( 𝐵  =  𝐴  →  ( 𝐵  ≠  𝐶  ↔  𝐴  ≠  𝐶 ) ) | 
						
							| 3 | 2 | eqcoms | ⊢ ( 𝐴  =  𝐵  →  ( 𝐵  ≠  𝐶  ↔  𝐴  ≠  𝐶 ) ) | 
						
							| 4 |  | pm5.1 | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐴  ≠  𝐶 )  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ≠  𝐶  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 6 | 3 5 | sylbid | ⊢ ( 𝐴  =  𝐵  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 7 |  | neeq2 | ⊢ ( 𝐴  =  𝐶  →  ( 𝐵  ≠  𝐴  ↔  𝐵  ≠  𝐶 ) ) | 
						
							| 8 |  | nesym | ⊢ ( 𝐵  ≠  𝐴  ↔  ¬  𝐴  =  𝐵 ) | 
						
							| 9 |  | pm5.1 | ⊢ ( ( 𝐴  =  𝐶  ∧  ¬  𝐴  =  𝐵 )  →  ( 𝐴  =  𝐶  ↔  ¬  𝐴  =  𝐵 ) ) | 
						
							| 10 | 8 9 | sylan2b | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  ≠  𝐴 )  →  ( 𝐴  =  𝐶  ↔  ¬  𝐴  =  𝐵 ) ) | 
						
							| 11 | 10 | necon2abid | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  ≠  𝐴 )  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝐴  =  𝐶  →  ( 𝐵  ≠  𝐴  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 13 | 7 12 | sylbird | ⊢ ( 𝐴  =  𝐶  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 14 | 6 13 | jaoi | ⊢ ( ( 𝐴  =  𝐵  ∨  𝐴  =  𝐶 )  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝐴  ∈  { 𝐵 ,  𝐶 }  →  ( 𝐵  ≠  𝐶  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝐴  ∈  { 𝐵 ,  𝐶 }  ∧  𝐵  ≠  𝐶 )  →  ( 𝐴  =  𝐵  ↔  𝐴  ≠  𝐶 ) ) |