| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri |  |-  ( A e. { B , C } -> ( A = B \/ A = C ) ) | 
						
							| 2 |  | neeq1 |  |-  ( B = A -> ( B =/= C <-> A =/= C ) ) | 
						
							| 3 | 2 | eqcoms |  |-  ( A = B -> ( B =/= C <-> A =/= C ) ) | 
						
							| 4 |  | pm5.1 |  |-  ( ( A = B /\ A =/= C ) -> ( A = B <-> A =/= C ) ) | 
						
							| 5 | 4 | ex |  |-  ( A = B -> ( A =/= C -> ( A = B <-> A =/= C ) ) ) | 
						
							| 6 | 3 5 | sylbid |  |-  ( A = B -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) | 
						
							| 7 |  | neeq2 |  |-  ( A = C -> ( B =/= A <-> B =/= C ) ) | 
						
							| 8 |  | nesym |  |-  ( B =/= A <-> -. A = B ) | 
						
							| 9 |  | pm5.1 |  |-  ( ( A = C /\ -. A = B ) -> ( A = C <-> -. A = B ) ) | 
						
							| 10 | 8 9 | sylan2b |  |-  ( ( A = C /\ B =/= A ) -> ( A = C <-> -. A = B ) ) | 
						
							| 11 | 10 | necon2abid |  |-  ( ( A = C /\ B =/= A ) -> ( A = B <-> A =/= C ) ) | 
						
							| 12 | 11 | ex |  |-  ( A = C -> ( B =/= A -> ( A = B <-> A =/= C ) ) ) | 
						
							| 13 | 7 12 | sylbird |  |-  ( A = C -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) | 
						
							| 14 | 6 13 | jaoi |  |-  ( ( A = B \/ A = C ) -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) | 
						
							| 15 | 1 14 | syl |  |-  ( A e. { B , C } -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( A e. { B , C } /\ B =/= C ) -> ( A = B <-> A =/= C ) ) |