Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
2 |
|
neeq1 |
|- ( B = A -> ( B =/= C <-> A =/= C ) ) |
3 |
2
|
eqcoms |
|- ( A = B -> ( B =/= C <-> A =/= C ) ) |
4 |
|
pm5.1 |
|- ( ( A = B /\ A =/= C ) -> ( A = B <-> A =/= C ) ) |
5 |
4
|
ex |
|- ( A = B -> ( A =/= C -> ( A = B <-> A =/= C ) ) ) |
6 |
3 5
|
sylbid |
|- ( A = B -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) |
7 |
|
neeq2 |
|- ( A = C -> ( B =/= A <-> B =/= C ) ) |
8 |
|
nesym |
|- ( B =/= A <-> -. A = B ) |
9 |
|
pm5.1 |
|- ( ( A = C /\ -. A = B ) -> ( A = C <-> -. A = B ) ) |
10 |
8 9
|
sylan2b |
|- ( ( A = C /\ B =/= A ) -> ( A = C <-> -. A = B ) ) |
11 |
10
|
necon2abid |
|- ( ( A = C /\ B =/= A ) -> ( A = B <-> A =/= C ) ) |
12 |
11
|
ex |
|- ( A = C -> ( B =/= A -> ( A = B <-> A =/= C ) ) ) |
13 |
7 12
|
sylbird |
|- ( A = C -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) |
14 |
6 13
|
jaoi |
|- ( ( A = B \/ A = C ) -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) |
15 |
1 14
|
syl |
|- ( A e. { B , C } -> ( B =/= C -> ( A = B <-> A =/= C ) ) ) |
16 |
15
|
imp |
|- ( ( A e. { B , C } /\ B =/= C ) -> ( A = B <-> A =/= C ) ) |