Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd4 |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 1 } |
2 |
|
elmod2 |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 mod 2 ) ∈ { 0 , 1 } ) |
3 |
|
prcom |
⊢ { 0 , 1 } = { 1 , 0 } |
4 |
3
|
eleq2i |
⊢ ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } ↔ ( 𝑧 mod 2 ) ∈ { 1 , 0 } ) |
5 |
4
|
biimpi |
⊢ ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } → ( 𝑧 mod 2 ) ∈ { 1 , 0 } ) |
6 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
7 |
|
elprneb |
⊢ ( ( ( 𝑧 mod 2 ) ∈ { 1 , 0 } ∧ 1 ≠ 0 ) → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) ) |
8 |
5 6 7
|
sylancl |
⊢ ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) ) |
9 |
2 8
|
syl |
⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) ) |
10 |
9
|
rabbiia |
⊢ { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 1 } = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) ≠ 0 } |
11 |
1 10
|
eqtri |
⊢ Odd = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) ≠ 0 } |