| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfodd4 | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  =  1 } | 
						
							| 2 |  | elmod2 | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  mod  2 )  ∈  { 0 ,  1 } ) | 
						
							| 3 |  | prcom | ⊢ { 0 ,  1 }  =  { 1 ,  0 } | 
						
							| 4 | 3 | eleq2i | ⊢ ( ( 𝑧  mod  2 )  ∈  { 0 ,  1 }  ↔  ( 𝑧  mod  2 )  ∈  { 1 ,  0 } ) | 
						
							| 5 | 4 | biimpi | ⊢ ( ( 𝑧  mod  2 )  ∈  { 0 ,  1 }  →  ( 𝑧  mod  2 )  ∈  { 1 ,  0 } ) | 
						
							| 6 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 7 |  | elprneb | ⊢ ( ( ( 𝑧  mod  2 )  ∈  { 1 ,  0 }  ∧  1  ≠  0 )  →  ( ( 𝑧  mod  2 )  =  1  ↔  ( 𝑧  mod  2 )  ≠  0 ) ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝑧  mod  2 )  ∈  { 0 ,  1 }  →  ( ( 𝑧  mod  2 )  =  1  ↔  ( 𝑧  mod  2 )  ≠  0 ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝑧  ∈  ℤ  →  ( ( 𝑧  mod  2 )  =  1  ↔  ( 𝑧  mod  2 )  ≠  0 ) ) | 
						
							| 10 | 9 | rabbiia | ⊢ { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  =  1 }  =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  ≠  0 } | 
						
							| 11 | 1 10 | eqtri | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  ≠  0 } |