Metamath Proof Explorer


Theorem dfodd5

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd5 Odd = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) ≠ 0 }

Proof

Step Hyp Ref Expression
1 dfodd4 Odd = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 1 }
2 elmod2 ( 𝑧 ∈ ℤ → ( 𝑧 mod 2 ) ∈ { 0 , 1 } )
3 prcom { 0 , 1 } = { 1 , 0 }
4 3 eleq2i ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } ↔ ( 𝑧 mod 2 ) ∈ { 1 , 0 } )
5 4 biimpi ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } → ( 𝑧 mod 2 ) ∈ { 1 , 0 } )
6 ax-1ne0 1 ≠ 0
7 elprneb ( ( ( 𝑧 mod 2 ) ∈ { 1 , 0 } ∧ 1 ≠ 0 ) → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) )
8 5 6 7 sylancl ( ( 𝑧 mod 2 ) ∈ { 0 , 1 } → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) )
9 2 8 syl ( 𝑧 ∈ ℤ → ( ( 𝑧 mod 2 ) = 1 ↔ ( 𝑧 mod 2 ) ≠ 0 ) )
10 9 rabbiia { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 1 } = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) ≠ 0 }
11 1 10 eqtri Odd = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) ≠ 0 }