| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfodd2 | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ( ( 𝑧  −  1 )  /  2 )  ∈  ℤ } | 
						
							| 2 |  | peano2zm | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  −  1 )  ∈  ℤ ) | 
						
							| 3 | 2 | zred | ⊢ ( 𝑧  ∈  ℤ  →  ( 𝑧  −  1 )  ∈  ℝ ) | 
						
							| 4 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 5 |  | mod0 | ⊢ ( ( ( 𝑧  −  1 )  ∈  ℝ  ∧  2  ∈  ℝ+ )  →  ( ( ( 𝑧  −  1 )  mod  2 )  =  0  ↔  ( ( 𝑧  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  −  1 )  mod  2 )  =  0  ↔  ( ( 𝑧  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 7 |  | zre | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℝ ) | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 10 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑧  ∈  ℤ  →  1  <  2 ) | 
						
							| 12 |  | m1mod0mod1 | ⊢ ( ( 𝑧  ∈  ℝ  ∧  2  ∈  ℝ  ∧  1  <  2 )  →  ( ( ( 𝑧  −  1 )  mod  2 )  =  0  ↔  ( 𝑧  mod  2 )  =  1 ) ) | 
						
							| 13 | 7 9 11 12 | syl3anc | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  −  1 )  mod  2 )  =  0  ↔  ( 𝑧  mod  2 )  =  1 ) ) | 
						
							| 14 | 6 13 | bitr3d | ⊢ ( 𝑧  ∈  ℤ  →  ( ( ( 𝑧  −  1 )  /  2 )  ∈  ℤ  ↔  ( 𝑧  mod  2 )  =  1 ) ) | 
						
							| 15 | 14 | rabbiia | ⊢ { 𝑧  ∈  ℤ  ∣  ( ( 𝑧  −  1 )  /  2 )  ∈  ℤ }  =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  =  1 } | 
						
							| 16 | 1 15 | eqtri | ⊢  Odd   =  { 𝑧  ∈  ℤ  ∣  ( 𝑧  mod  2 )  =  1 } |