Description: Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfodd2 | ⊢ Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isodd2 | ⊢ ( 𝑥 ∈ Odd ↔ ( 𝑥 ∈ ℤ ∧ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 2 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 − 1 ) = ( 𝑥 − 1 ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 − 1 ) / 2 ) = ( ( 𝑥 − 1 ) / 2 ) ) | 
| 4 | 3 | eleq1d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) ) | 
| 5 | 4 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } ↔ ( 𝑥 ∈ ℤ ∧ ( ( 𝑥 − 1 ) / 2 ) ∈ ℤ ) ) | 
| 6 | 1 5 | bitr4i | ⊢ ( 𝑥 ∈ Odd ↔ 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } ) | 
| 7 | 6 | eqriv | ⊢ Odd = { 𝑧 ∈ ℤ ∣ ( ( 𝑧 − 1 ) / 2 ) ∈ ℤ } |