| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isodd2 |  |-  ( x e. Odd <-> ( x e. ZZ /\ ( ( x - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 2 |  | oveq1 |  |-  ( z = x -> ( z - 1 ) = ( x - 1 ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( z = x -> ( ( z - 1 ) / 2 ) = ( ( x - 1 ) / 2 ) ) | 
						
							| 4 | 3 | eleq1d |  |-  ( z = x -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> ( ( x - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 5 | 4 | elrab |  |-  ( x e. { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } <-> ( x e. ZZ /\ ( ( x - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 6 | 1 5 | bitr4i |  |-  ( x e. Odd <-> x e. { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } ) | 
						
							| 7 | 6 | eqriv |  |-  Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } |