| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfodd2 |  |-  Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } | 
						
							| 2 |  | simpr |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) / 2 ) e. ZZ ) | 
						
							| 3 |  | oveq2 |  |-  ( i = ( ( z - 1 ) / 2 ) -> ( 2 x. i ) = ( 2 x. ( ( z - 1 ) / 2 ) ) ) | 
						
							| 4 |  | peano2zm |  |-  ( z e. ZZ -> ( z - 1 ) e. ZZ ) | 
						
							| 5 | 4 | zcnd |  |-  ( z e. ZZ -> ( z - 1 ) e. CC ) | 
						
							| 6 |  | 2cnd |  |-  ( z e. ZZ -> 2 e. CC ) | 
						
							| 7 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 8 | 7 | a1i |  |-  ( z e. ZZ -> 2 =/= 0 ) | 
						
							| 9 | 5 6 8 | 3jca |  |-  ( z e. ZZ -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 11 |  | divcan2 |  |-  ( ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) | 
						
							| 13 | 3 12 | sylan9eqr |  |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( 2 x. i ) = ( z - 1 ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = ( ( z - 1 ) + 1 ) ) | 
						
							| 15 |  | zcn |  |-  ( z e. ZZ -> z e. CC ) | 
						
							| 16 |  | npcan1 |  |-  ( z e. CC -> ( ( z - 1 ) + 1 ) = z ) | 
						
							| 17 | 15 16 | syl |  |-  ( z e. ZZ -> ( ( z - 1 ) + 1 ) = z ) | 
						
							| 18 | 17 | adantr |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) + 1 ) = z ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( z - 1 ) + 1 ) = z ) | 
						
							| 20 | 14 19 | eqtrd |  |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = z ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( z = ( ( 2 x. i ) + 1 ) <-> z = z ) ) | 
						
							| 22 |  | eqidd |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> z = z ) | 
						
							| 23 | 2 21 22 | rspcedvd |  |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) | 
						
							| 24 | 23 | ex |  |-  ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) | 
						
							| 25 |  | oveq1 |  |-  ( z = ( ( 2 x. i ) + 1 ) -> ( z - 1 ) = ( ( ( 2 x. i ) + 1 ) - 1 ) ) | 
						
							| 26 |  | zcn |  |-  ( i e. ZZ -> i e. CC ) | 
						
							| 27 |  | mulcl |  |-  ( ( 2 e. CC /\ i e. CC ) -> ( 2 x. i ) e. CC ) | 
						
							| 28 | 6 26 27 | syl2an |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC ) | 
						
							| 29 |  | pncan1 |  |-  ( ( 2 x. i ) e. CC -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) | 
						
							| 31 | 25 30 | sylan9eqr |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( z - 1 ) = ( 2 x. i ) ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = ( ( 2 x. i ) / 2 ) ) | 
						
							| 33 | 26 | adantl |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) | 
						
							| 34 |  | 2cnd |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) | 
						
							| 35 | 7 | a1i |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 ) | 
						
							| 36 | 33 34 35 | divcan3d |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( 2 x. i ) / 2 ) = i ) | 
						
							| 38 | 32 37 | eqtrd |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = i ) | 
						
							| 39 |  | simpr |  |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> i e. ZZ ) | 
						
							| 41 | 38 40 | eqeltrd |  |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) e. ZZ ) | 
						
							| 42 | 41 | rexlimdva2 |  |-  ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) -> ( ( z - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 43 | 24 42 | impbid |  |-  ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) | 
						
							| 44 | 43 | rabbiia |  |-  { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } | 
						
							| 45 | 1 44 | eqtri |  |-  Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |