| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfodd2 |
|- Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } |
| 2 |
|
simpr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) / 2 ) e. ZZ ) |
| 3 |
|
oveq2 |
|- ( i = ( ( z - 1 ) / 2 ) -> ( 2 x. i ) = ( 2 x. ( ( z - 1 ) / 2 ) ) ) |
| 4 |
|
peano2zm |
|- ( z e. ZZ -> ( z - 1 ) e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( z e. ZZ -> ( z - 1 ) e. CC ) |
| 6 |
|
2cnd |
|- ( z e. ZZ -> 2 e. CC ) |
| 7 |
|
2ne0 |
|- 2 =/= 0 |
| 8 |
7
|
a1i |
|- ( z e. ZZ -> 2 =/= 0 ) |
| 9 |
5 6 8
|
3jca |
|- ( z e. ZZ -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 10 |
9
|
adantr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 11 |
|
divcan2 |
|- ( ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) |
| 12 |
10 11
|
syl |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) |
| 13 |
3 12
|
sylan9eqr |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( 2 x. i ) = ( z - 1 ) ) |
| 14 |
13
|
oveq1d |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = ( ( z - 1 ) + 1 ) ) |
| 15 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
| 16 |
|
npcan1 |
|- ( z e. CC -> ( ( z - 1 ) + 1 ) = z ) |
| 17 |
15 16
|
syl |
|- ( z e. ZZ -> ( ( z - 1 ) + 1 ) = z ) |
| 18 |
17
|
adantr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) + 1 ) = z ) |
| 19 |
18
|
adantr |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( z - 1 ) + 1 ) = z ) |
| 20 |
14 19
|
eqtrd |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = z ) |
| 21 |
20
|
eqeq2d |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( z = ( ( 2 x. i ) + 1 ) <-> z = z ) ) |
| 22 |
|
eqidd |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> z = z ) |
| 23 |
2 21 22
|
rspcedvd |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) |
| 24 |
23
|
ex |
|- ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) |
| 25 |
|
oveq1 |
|- ( z = ( ( 2 x. i ) + 1 ) -> ( z - 1 ) = ( ( ( 2 x. i ) + 1 ) - 1 ) ) |
| 26 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
| 27 |
|
mulcl |
|- ( ( 2 e. CC /\ i e. CC ) -> ( 2 x. i ) e. CC ) |
| 28 |
6 26 27
|
syl2an |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC ) |
| 29 |
|
pncan1 |
|- ( ( 2 x. i ) e. CC -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) |
| 30 |
28 29
|
syl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) |
| 31 |
25 30
|
sylan9eqr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( z - 1 ) = ( 2 x. i ) ) |
| 32 |
31
|
oveq1d |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = ( ( 2 x. i ) / 2 ) ) |
| 33 |
26
|
adantl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) |
| 34 |
|
2cnd |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) |
| 35 |
7
|
a1i |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 ) |
| 36 |
33 34 35
|
divcan3d |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i ) |
| 37 |
36
|
adantr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( 2 x. i ) / 2 ) = i ) |
| 38 |
32 37
|
eqtrd |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = i ) |
| 39 |
|
simpr |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ ) |
| 40 |
39
|
adantr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> i e. ZZ ) |
| 41 |
38 40
|
eqeltrd |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) e. ZZ ) |
| 42 |
41
|
rexlimdva2 |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) -> ( ( z - 1 ) / 2 ) e. ZZ ) ) |
| 43 |
24 42
|
impbid |
|- ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) |
| 44 |
43
|
rabbiia |
|- { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |
| 45 |
1 44
|
eqtri |
|- Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |