Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd2 |
|
2 |
|
simpr |
|
3 |
|
oveq2 |
|
4 |
|
peano2zm |
|
5 |
4
|
zcnd |
|
6 |
|
2cnd |
|
7 |
|
2ne0 |
|
8 |
7
|
a1i |
|
9 |
5 6 8
|
3jca |
|
10 |
9
|
adantr |
|
11 |
|
divcan2 |
|
12 |
10 11
|
syl |
|
13 |
3 12
|
sylan9eqr |
|
14 |
13
|
oveq1d |
|
15 |
|
zcn |
|
16 |
|
npcan1 |
|
17 |
15 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
18
|
adantr |
|
20 |
14 19
|
eqtrd |
|
21 |
20
|
eqeq2d |
|
22 |
|
eqidd |
|
23 |
2 21 22
|
rspcedvd |
|
24 |
23
|
ex |
|
25 |
|
oveq1 |
|
26 |
|
zcn |
|
27 |
|
mulcl |
|
28 |
6 26 27
|
syl2an |
|
29 |
|
pncan1 |
|
30 |
28 29
|
syl |
|
31 |
25 30
|
sylan9eqr |
|
32 |
31
|
oveq1d |
|
33 |
26
|
adantl |
|
34 |
|
2cnd |
|
35 |
7
|
a1i |
|
36 |
33 34 35
|
divcan3d |
|
37 |
36
|
adantr |
|
38 |
32 37
|
eqtrd |
|
39 |
|
simpr |
|
40 |
39
|
adantr |
|
41 |
38 40
|
eqeltrd |
|
42 |
41
|
rexlimdva2 |
|
43 |
24 42
|
impbid |
|
44 |
43
|
rabbiia |
|
45 |
1 44
|
eqtri |
|