Metamath Proof Explorer


Theorem dfodd6

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd6 Odd = z | i z = 2 i + 1

Proof

Step Hyp Ref Expression
1 dfodd2 Odd = z | z 1 2
2 simpr z z 1 2 z 1 2
3 oveq2 i = z 1 2 2 i = 2 z 1 2
4 peano2zm z z 1
5 4 zcnd z z 1
6 2cnd z 2
7 2ne0 2 0
8 7 a1i z 2 0
9 5 6 8 3jca z z 1 2 2 0
10 9 adantr z z 1 2 z 1 2 2 0
11 divcan2 z 1 2 2 0 2 z 1 2 = z 1
12 10 11 syl z z 1 2 2 z 1 2 = z 1
13 3 12 sylan9eqr z z 1 2 i = z 1 2 2 i = z 1
14 13 oveq1d z z 1 2 i = z 1 2 2 i + 1 = z - 1 + 1
15 zcn z z
16 npcan1 z z - 1 + 1 = z
17 15 16 syl z z - 1 + 1 = z
18 17 adantr z z 1 2 z - 1 + 1 = z
19 18 adantr z z 1 2 i = z 1 2 z - 1 + 1 = z
20 14 19 eqtrd z z 1 2 i = z 1 2 2 i + 1 = z
21 20 eqeq2d z z 1 2 i = z 1 2 z = 2 i + 1 z = z
22 eqidd z z 1 2 z = z
23 2 21 22 rspcedvd z z 1 2 i z = 2 i + 1
24 23 ex z z 1 2 i z = 2 i + 1
25 oveq1 z = 2 i + 1 z 1 = 2 i + 1 - 1
26 zcn i i
27 mulcl 2 i 2 i
28 6 26 27 syl2an z i 2 i
29 pncan1 2 i 2 i + 1 - 1 = 2 i
30 28 29 syl z i 2 i + 1 - 1 = 2 i
31 25 30 sylan9eqr z i z = 2 i + 1 z 1 = 2 i
32 31 oveq1d z i z = 2 i + 1 z 1 2 = 2 i 2
33 26 adantl z i i
34 2cnd z i 2
35 7 a1i z i 2 0
36 33 34 35 divcan3d z i 2 i 2 = i
37 36 adantr z i z = 2 i + 1 2 i 2 = i
38 32 37 eqtrd z i z = 2 i + 1 z 1 2 = i
39 simpr z i i
40 39 adantr z i z = 2 i + 1 i
41 38 40 eqeltrd z i z = 2 i + 1 z 1 2
42 41 rexlimdva2 z i z = 2 i + 1 z 1 2
43 24 42 impbid z z 1 2 i z = 2 i + 1
44 43 rabbiia z | z 1 2 = z | i z = 2 i + 1
45 1 44 eqtri Odd = z | i z = 2 i + 1