| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfodd2 |
|
| 2 |
|
simpr |
|
| 3 |
|
oveq2 |
|
| 4 |
|
peano2zm |
|
| 5 |
4
|
zcnd |
|
| 6 |
|
2cnd |
|
| 7 |
|
2ne0 |
|
| 8 |
7
|
a1i |
|
| 9 |
5 6 8
|
3jca |
|
| 10 |
9
|
adantr |
|
| 11 |
|
divcan2 |
|
| 12 |
10 11
|
syl |
|
| 13 |
3 12
|
sylan9eqr |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
zcn |
|
| 16 |
|
npcan1 |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
adantr |
|
| 19 |
18
|
adantr |
|
| 20 |
14 19
|
eqtrd |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
|
eqidd |
|
| 23 |
2 21 22
|
rspcedvd |
|
| 24 |
23
|
ex |
|
| 25 |
|
oveq1 |
|
| 26 |
|
zcn |
|
| 27 |
|
mulcl |
|
| 28 |
6 26 27
|
syl2an |
|
| 29 |
|
pncan1 |
|
| 30 |
28 29
|
syl |
|
| 31 |
25 30
|
sylan9eqr |
|
| 32 |
31
|
oveq1d |
|
| 33 |
26
|
adantl |
|
| 34 |
|
2cnd |
|
| 35 |
7
|
a1i |
|
| 36 |
33 34 35
|
divcan3d |
|
| 37 |
36
|
adantr |
|
| 38 |
32 37
|
eqtrd |
|
| 39 |
|
simpr |
|
| 40 |
39
|
adantr |
|
| 41 |
38 40
|
eqeltrd |
|
| 42 |
41
|
rexlimdva2 |
|
| 43 |
24 42
|
impbid |
|
| 44 |
43
|
rabbiia |
|
| 45 |
1 44
|
eqtri |
|