Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfodd6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfodd2 | |
|
2 | simpr | |
|
3 | oveq2 | |
|
4 | peano2zm | |
|
5 | 4 | zcnd | |
6 | 2cnd | |
|
7 | 2ne0 | |
|
8 | 7 | a1i | |
9 | 5 6 8 | 3jca | |
10 | 9 | adantr | |
11 | divcan2 | |
|
12 | 10 11 | syl | |
13 | 3 12 | sylan9eqr | |
14 | 13 | oveq1d | |
15 | zcn | |
|
16 | npcan1 | |
|
17 | 15 16 | syl | |
18 | 17 | adantr | |
19 | 18 | adantr | |
20 | 14 19 | eqtrd | |
21 | 20 | eqeq2d | |
22 | eqidd | |
|
23 | 2 21 22 | rspcedvd | |
24 | 23 | ex | |
25 | oveq1 | |
|
26 | zcn | |
|
27 | mulcl | |
|
28 | 6 26 27 | syl2an | |
29 | pncan1 | |
|
30 | 28 29 | syl | |
31 | 25 30 | sylan9eqr | |
32 | 31 | oveq1d | |
33 | 26 | adantl | |
34 | 2cnd | |
|
35 | 7 | a1i | |
36 | 33 34 35 | divcan3d | |
37 | 36 | adantr | |
38 | 32 37 | eqtrd | |
39 | simpr | |
|
40 | 39 | adantr | |
41 | 38 40 | eqeltrd | |
42 | 41 | rexlimdva2 | |
43 | 24 42 | impbid | |
44 | 43 | rabbiia | |
45 | 1 44 | eqtri | |