Metamath Proof Explorer


Theorem dfodd6

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd6 Odd=z|iz=2i+1

Proof

Step Hyp Ref Expression
1 dfodd2 Odd=z|z12
2 simpr zz12z12
3 oveq2 i=z122i=2z12
4 peano2zm zz1
5 4 zcnd zz1
6 2cnd z2
7 2ne0 20
8 7 a1i z20
9 5 6 8 3jca zz1220
10 9 adantr zz12z1220
11 divcan2 z12202z12=z1
12 10 11 syl zz122z12=z1
13 3 12 sylan9eqr zz12i=z122i=z1
14 13 oveq1d zz12i=z122i+1=z-1+1
15 zcn zz
16 npcan1 zz-1+1=z
17 15 16 syl zz-1+1=z
18 17 adantr zz12z-1+1=z
19 18 adantr zz12i=z12z-1+1=z
20 14 19 eqtrd zz12i=z122i+1=z
21 20 eqeq2d zz12i=z12z=2i+1z=z
22 eqidd zz12z=z
23 2 21 22 rspcedvd zz12iz=2i+1
24 23 ex zz12iz=2i+1
25 oveq1 z=2i+1z1=2i+1-1
26 zcn ii
27 mulcl 2i2i
28 6 26 27 syl2an zi2i
29 pncan1 2i2i+1-1=2i
30 28 29 syl zi2i+1-1=2i
31 25 30 sylan9eqr ziz=2i+1z1=2i
32 31 oveq1d ziz=2i+1z12=2i2
33 26 adantl zii
34 2cnd zi2
35 7 a1i zi20
36 33 34 35 divcan3d zi2i2=i
37 36 adantr ziz=2i+12i2=i
38 32 37 eqtrd ziz=2i+1z12=i
39 simpr zii
40 39 adantr ziz=2i+1i
41 38 40 eqeltrd ziz=2i+1z12
42 41 rexlimdva2 ziz=2i+1z12
43 24 42 impbid zz12iz=2i+1
44 43 rabbiia z|z12=z|iz=2i+1
45 1 44 eqtri Odd=z|iz=2i+1