Metamath Proof Explorer


Theorem dfodd2

Description: Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020)

Ref Expression
Assertion dfodd2 Odd=z|z12

Proof

Step Hyp Ref Expression
1 isodd2 xOddxx12
2 oveq1 z=xz1=x1
3 2 oveq1d z=xz12=x12
4 3 eleq1d z=xz12x12
5 4 elrab xz|z12xx12
6 1 5 bitr4i xOddxz|z12
7 6 eqriv Odd=z|z12