Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
npcan1 |
|- ( A e. CC -> ( ( A - 1 ) + 1 ) = A ) |
3 |
2
|
eqcomd |
|- ( A e. CC -> A = ( ( A - 1 ) + 1 ) ) |
4 |
1 3
|
syl |
|- ( A e. RR -> A = ( ( A - 1 ) + 1 ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> A = ( ( A - 1 ) + 1 ) ) |
6 |
5
|
adantr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> A = ( ( A - 1 ) + 1 ) ) |
7 |
6
|
oveq1d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( A mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) |
8 |
|
simpr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( A - 1 ) mod N ) = 0 ) |
9 |
|
1mod |
|- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
10 |
9
|
3adant1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
11 |
10
|
adantr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( 1 mod N ) = 1 ) |
12 |
8 11
|
oveq12d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) = ( 0 + 1 ) ) |
13 |
12
|
oveq1d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( 0 + 1 ) mod N ) ) |
14 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
15 |
14
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A - 1 ) e. RR ) |
16 |
|
1red |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> 1 e. RR ) |
17 |
|
simpl |
|- ( ( N e. RR /\ 1 < N ) -> N e. RR ) |
18 |
|
0lt1 |
|- 0 < 1 |
19 |
|
0re |
|- 0 e. RR |
20 |
|
1re |
|- 1 e. RR |
21 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) |
22 |
19 20 21
|
mp3an12 |
|- ( N e. RR -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) |
23 |
18 22
|
mpani |
|- ( N e. RR -> ( 1 < N -> 0 < N ) ) |
24 |
23
|
imp |
|- ( ( N e. RR /\ 1 < N ) -> 0 < N ) |
25 |
17 24
|
elrpd |
|- ( ( N e. RR /\ 1 < N ) -> N e. RR+ ) |
26 |
25
|
3adant1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> N e. RR+ ) |
27 |
15 16 26
|
3jca |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) ) |
28 |
27
|
adantr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) ) |
29 |
|
modaddabs |
|- ( ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) |
30 |
28 29
|
syl |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) |
31 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
32 |
31
|
oveq1i |
|- ( ( 0 + 1 ) mod N ) = ( 1 mod N ) |
33 |
32 9
|
syl5eq |
|- ( ( N e. RR /\ 1 < N ) -> ( ( 0 + 1 ) mod N ) = 1 ) |
34 |
33
|
3adant1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( 0 + 1 ) mod N ) = 1 ) |
35 |
34
|
adantr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( 0 + 1 ) mod N ) = 1 ) |
36 |
13 30 35
|
3eqtr3d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( A - 1 ) + 1 ) mod N ) = 1 ) |
37 |
7 36
|
eqtrd |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( A mod N ) = 1 ) |
38 |
|
simpr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( A mod N ) = 1 ) |
39 |
38
|
eqcomd |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> 1 = ( A mod N ) ) |
40 |
39
|
oveq2d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( A - 1 ) = ( A - ( A mod N ) ) ) |
41 |
40
|
oveq1d |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - 1 ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) |
42 |
|
simp1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> A e. RR ) |
43 |
42 26
|
modcld |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A mod N ) e. RR ) |
44 |
43
|
recnd |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A mod N ) e. CC ) |
45 |
44
|
subidd |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A mod N ) - ( A mod N ) ) = 0 ) |
46 |
45
|
oveq1d |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( 0 mod N ) ) |
47 |
|
modsubmod |
|- ( ( A e. RR /\ ( A mod N ) e. RR /\ N e. RR+ ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) |
48 |
42 43 26 47
|
syl3anc |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) |
49 |
|
0mod |
|- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
50 |
26 49
|
syl |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( 0 mod N ) = 0 ) |
51 |
46 48 50
|
3eqtr3d |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A - ( A mod N ) ) mod N ) = 0 ) |
52 |
51
|
adantr |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - ( A mod N ) ) mod N ) = 0 ) |
53 |
41 52
|
eqtrd |
|- ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - 1 ) mod N ) = 0 ) |
54 |
37 53
|
impbida |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) |