| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | npcan1 |  |-  ( A e. CC -> ( ( A - 1 ) + 1 ) = A ) | 
						
							| 3 | 2 | eqcomd |  |-  ( A e. CC -> A = ( ( A - 1 ) + 1 ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( A e. RR -> A = ( ( A - 1 ) + 1 ) ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> A = ( ( A - 1 ) + 1 ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> A = ( ( A - 1 ) + 1 ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( A mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( A - 1 ) mod N ) = 0 ) | 
						
							| 9 |  | 1mod |  |-  ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( 1 mod N ) = 1 ) | 
						
							| 12 | 8 11 | oveq12d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) = ( 0 + 1 ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( 0 + 1 ) mod N ) ) | 
						
							| 14 |  | peano2rem |  |-  ( A e. RR -> ( A - 1 ) e. RR ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A - 1 ) e. RR ) | 
						
							| 16 |  | 1red |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> 1 e. RR ) | 
						
							| 17 |  | simpl |  |-  ( ( N e. RR /\ 1 < N ) -> N e. RR ) | 
						
							| 18 |  | 0lt1 |  |-  0 < 1 | 
						
							| 19 |  | 0re |  |-  0 e. RR | 
						
							| 20 |  | 1re |  |-  1 e. RR | 
						
							| 21 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) | 
						
							| 22 | 19 20 21 | mp3an12 |  |-  ( N e. RR -> ( ( 0 < 1 /\ 1 < N ) -> 0 < N ) ) | 
						
							| 23 | 18 22 | mpani |  |-  ( N e. RR -> ( 1 < N -> 0 < N ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( N e. RR /\ 1 < N ) -> 0 < N ) | 
						
							| 25 | 17 24 | elrpd |  |-  ( ( N e. RR /\ 1 < N ) -> N e. RR+ ) | 
						
							| 26 | 25 | 3adant1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> N e. RR+ ) | 
						
							| 27 | 15 16 26 | 3jca |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) ) | 
						
							| 29 |  | modaddabs |  |-  ( ( ( A - 1 ) e. RR /\ 1 e. RR /\ N e. RR+ ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( ( A - 1 ) mod N ) + ( 1 mod N ) ) mod N ) = ( ( ( A - 1 ) + 1 ) mod N ) ) | 
						
							| 31 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 32 | 31 | oveq1i |  |-  ( ( 0 + 1 ) mod N ) = ( 1 mod N ) | 
						
							| 33 | 32 9 | eqtrid |  |-  ( ( N e. RR /\ 1 < N ) -> ( ( 0 + 1 ) mod N ) = 1 ) | 
						
							| 34 | 33 | 3adant1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( 0 + 1 ) mod N ) = 1 ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( 0 + 1 ) mod N ) = 1 ) | 
						
							| 36 | 13 30 35 | 3eqtr3d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( ( ( A - 1 ) + 1 ) mod N ) = 1 ) | 
						
							| 37 | 7 36 | eqtrd |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( ( A - 1 ) mod N ) = 0 ) -> ( A mod N ) = 1 ) | 
						
							| 38 |  | simpr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( A mod N ) = 1 ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> 1 = ( A mod N ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( A - 1 ) = ( A - ( A mod N ) ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - 1 ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) | 
						
							| 42 |  | simp1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> A e. RR ) | 
						
							| 43 | 42 26 | modcld |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A mod N ) e. RR ) | 
						
							| 44 | 43 | recnd |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( A mod N ) e. CC ) | 
						
							| 45 | 44 | subidd |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A mod N ) - ( A mod N ) ) = 0 ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( 0 mod N ) ) | 
						
							| 47 |  | modsubmod |  |-  ( ( A e. RR /\ ( A mod N ) e. RR /\ N e. RR+ ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) | 
						
							| 48 | 42 43 26 47 | syl3anc |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A mod N ) - ( A mod N ) ) mod N ) = ( ( A - ( A mod N ) ) mod N ) ) | 
						
							| 49 |  | 0mod |  |-  ( N e. RR+ -> ( 0 mod N ) = 0 ) | 
						
							| 50 | 26 49 | syl |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( 0 mod N ) = 0 ) | 
						
							| 51 | 46 48 50 | 3eqtr3d |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( A - ( A mod N ) ) mod N ) = 0 ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - ( A mod N ) ) mod N ) = 0 ) | 
						
							| 53 | 41 52 | eqtrd |  |-  ( ( ( A e. RR /\ N e. RR /\ 1 < N ) /\ ( A mod N ) = 1 ) -> ( ( A - 1 ) mod N ) = 0 ) | 
						
							| 54 | 37 53 | impbida |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) |