Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfeven3 | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-even | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ } | |
2 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
3 | 2rp | ⊢ 2 ∈ ℝ+ | |
4 | mod0 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) ) | |
5 | 2 3 4 | sylancl | ⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) ) |
6 | 5 | bicomd | ⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 / 2 ) ∈ ℤ ↔ ( 𝑧 mod 2 ) = 0 ) ) |
7 | 6 | rabbiia | ⊢ { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ } = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } |
8 | 1 7 | eqtri | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } |