Metamath Proof Explorer


Theorem dfeven3

Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfeven3 Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 }

Proof

Step Hyp Ref Expression
1 df-even Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ }
2 zre ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ )
3 2rp 2 ∈ ℝ+
4 mod0 ( ( 𝑧 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) )
5 2 3 4 sylancl ( 𝑧 ∈ ℤ → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) )
6 5 bicomd ( 𝑧 ∈ ℤ → ( ( 𝑧 / 2 ) ∈ ℤ ↔ ( 𝑧 mod 2 ) = 0 ) )
7 6 rabbiia { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ } = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 }
8 1 7 eqtri Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 }