Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeven3 | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-even | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ } | |
| 2 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 3 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 4 | mod0 | ⊢ ( ( 𝑧 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 mod 2 ) = 0 ↔ ( 𝑧 / 2 ) ∈ ℤ ) ) | 
| 6 | 5 | bicomd | ⊢ ( 𝑧 ∈ ℤ → ( ( 𝑧 / 2 ) ∈ ℤ ↔ ( 𝑧 mod 2 ) = 0 ) ) | 
| 7 | 6 | rabbiia | ⊢ { 𝑧 ∈ ℤ ∣ ( 𝑧 / 2 ) ∈ ℤ } = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } | 
| 8 | 1 7 | eqtri | ⊢ Even = { 𝑧 ∈ ℤ ∣ ( 𝑧 mod 2 ) = 0 } |