Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfifp7 | |- ( if- ( ph , ps , ch ) <-> ( ( ch -> ph ) -> ( ph /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom | |- ( ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) <-> ( -. ( ch -> ph ) \/ ( ph /\ ps ) ) ) |
|
| 2 | dfifp6 | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) ) |
|
| 3 | imor | |- ( ( ( ch -> ph ) -> ( ph /\ ps ) ) <-> ( -. ( ch -> ph ) \/ ( ph /\ ps ) ) ) |
|
| 4 | 1 2 3 | 3bitr4i | |- ( if- ( ph , ps , ch ) <-> ( ( ch -> ph ) -> ( ph /\ ps ) ) ) |