Step |
Hyp |
Ref |
Expression |
1 |
|
fvres |
|- ( c e. Cat -> ( ( oppCat |` Cat ) ` c ) = ( oppCat ` c ) ) |
2 |
1
|
fveq2d |
|- ( c e. Cat -> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) = ( TermO ` ( oppCat ` c ) ) ) |
3 |
2
|
mpteq2ia |
|- ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) = ( c e. Cat |-> ( TermO ` ( oppCat ` c ) ) ) |
4 |
|
termofn |
|- TermO Fn Cat |
5 |
|
dffn2 |
|- ( TermO Fn Cat <-> TermO : Cat --> _V ) |
6 |
4 5
|
mpbi |
|- TermO : Cat --> _V |
7 |
|
oppccatf |
|- ( oppCat |` Cat ) : Cat --> Cat |
8 |
|
fcompt |
|- ( ( TermO : Cat --> _V /\ ( oppCat |` Cat ) : Cat --> Cat ) -> ( TermO o. ( oppCat |` Cat ) ) = ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( TermO o. ( oppCat |` Cat ) ) = ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) |
10 |
|
dfinito2 |
|- InitO = ( c e. Cat |-> ( TermO ` ( oppCat ` c ) ) ) |
11 |
3 9 10
|
3eqtr4ri |
|- InitO = ( TermO o. ( oppCat |` Cat ) ) |