| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-iop |
|- Iop = ( projh ` ~H ) |
| 2 |
|
helch |
|- ~H e. CH |
| 3 |
2
|
pjfni |
|- ( projh ` ~H ) Fn ~H |
| 4 |
|
fnresi |
|- ( _I |` ~H ) Fn ~H |
| 5 |
|
pjch1 |
|- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = x ) |
| 6 |
|
fvresi |
|- ( x e. ~H -> ( ( _I |` ~H ) ` x ) = x ) |
| 7 |
5 6
|
eqtr4d |
|- ( x e. ~H -> ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) ) |
| 8 |
7
|
rgen |
|- A. x e. ~H ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) |
| 9 |
|
eqfnfv |
|- ( ( ( projh ` ~H ) Fn ~H /\ ( _I |` ~H ) Fn ~H ) -> ( ( projh ` ~H ) = ( _I |` ~H ) <-> A. x e. ~H ( ( projh ` ~H ) ` x ) = ( ( _I |` ~H ) ` x ) ) ) |
| 10 |
8 9
|
mpbiri |
|- ( ( ( projh ` ~H ) Fn ~H /\ ( _I |` ~H ) Fn ~H ) -> ( projh ` ~H ) = ( _I |` ~H ) ) |
| 11 |
3 4 10
|
mp2an |
|- ( projh ` ~H ) = ( _I |` ~H ) |
| 12 |
1 11
|
eqtri |
|- Iop = ( _I |` ~H ) |