| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-iop |
⊢ Iop = ( projℎ ‘ ℋ ) |
| 2 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 3 |
2
|
pjfni |
⊢ ( projℎ ‘ ℋ ) Fn ℋ |
| 4 |
|
fnresi |
⊢ ( I ↾ ℋ ) Fn ℋ |
| 5 |
|
pjch1 |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
| 6 |
|
fvresi |
⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
| 7 |
5 6
|
eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) ) |
| 8 |
7
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) |
| 9 |
|
eqfnfv |
⊢ ( ( ( projℎ ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) ↔ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ ℋ ) ‘ 𝑥 ) = ( ( I ↾ ℋ ) ‘ 𝑥 ) ) ) |
| 10 |
8 9
|
mpbiri |
⊢ ( ( ( projℎ ‘ ℋ ) Fn ℋ ∧ ( I ↾ ℋ ) Fn ℋ ) → ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) ) |
| 11 |
3 4 10
|
mp2an |
⊢ ( projℎ ‘ ℋ ) = ( I ↾ ℋ ) |
| 12 |
1 11
|
eqtri |
⊢ Iop = ( I ↾ ℋ ) |