Metamath Proof Explorer


Theorem dfnrm3

Description: A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm . (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Assertion dfnrm3
|- Nrm = { j e. Top | A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) }

Proof

Step Hyp Ref Expression
1 isnrm4
 |-  ( j e. Nrm <-> ( j e. Top /\ A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) ) )
2 1 abbi2i
 |-  Nrm = { j | ( j e. Top /\ A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) ) }
3 df-rab
 |-  { j e. Top | A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) } = { j | ( j e. Top /\ A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) ) }
4 2 3 eqtr4i
 |-  Nrm = { j e. Top | A. c e. ( Clsd ` j ) A. d e. ( Clsd ` j ) ( ( c i^i d ) = (/) -> E. x e. ( ( nei ` j ) ` c ) E. y e. ( ( nei ` j ) ` d ) ( x i^i y ) = (/) ) }