Metamath Proof Explorer


Theorem dfnrm3

Description: A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm . (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Assertion dfnrm3 Nrm = j Top | c Clsd j d Clsd j c d = x nei j c y nei j d x y =

Proof

Step Hyp Ref Expression
1 isnrm4 j Nrm j Top c Clsd j d Clsd j c d = x nei j c y nei j d x y =
2 1 abbi2i Nrm = j | j Top c Clsd j d Clsd j c d = x nei j c y nei j d x y =
3 df-rab j Top | c Clsd j d Clsd j c d = x nei j c y nei j d x y = = j | j Top c Clsd j d Clsd j c d = x nei j c y nei j d x y =
4 2 3 eqtr4i Nrm = j Top | c Clsd j d Clsd j c d = x nei j c y nei j d x y =