Metamath Proof Explorer


Theorem isnrm4

Description: A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Assertion isnrm4 J Nrm J Top c Clsd J d Clsd J c d = x nei J c y nei J d x y =

Proof

Step Hyp Ref Expression
1 isnrm3 J Nrm J Top c Clsd J d Clsd J c d = x J y J c x d y x y =
2 id J Top J Top
3 2 sepnsepo J Top x nei J c y nei J d x y = x J y J c x d y x y =
4 3 imbi2d J Top c d = x nei J c y nei J d x y = c d = x J y J c x d y x y =
5 4 2ralbidv J Top c Clsd J d Clsd J c d = x nei J c y nei J d x y = c Clsd J d Clsd J c d = x J y J c x d y x y =
6 5 pm5.32i J Top c Clsd J d Clsd J c d = x nei J c y nei J d x y = J Top c Clsd J d Clsd J c d = x J y J c x d y x y =
7 1 6 bitr4i J Nrm J Top c Clsd J d Clsd J c d = x nei J c y nei J d x y =