Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnrm3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop | |
|
2 | nrmsep | |
|
3 | 2 | 3exp2 | |
4 | 3 | impd | |
5 | 4 | ralrimivv | |
6 | 1 5 | jca | |
7 | simpl | |
|
8 | simpr1 | |
|
9 | simpr2 | |
|
10 | sslin | |
|
11 | 9 10 | syl | |
12 | eqid | |
|
13 | 12 | opncld | |
14 | 13 | ad4ant13 | |
15 | simpr3 | |
|
16 | simpllr | |
|
17 | elssuni | |
|
18 | reldisj | |
|
19 | 16 17 18 | 3syl | |
20 | 15 19 | mpbid | |
21 | 12 | clsss2 | |
22 | ssdifin0 | |
|
23 | 21 22 | syl | |
24 | 14 20 23 | syl2anc | |
25 | sseq0 | |
|
26 | 11 24 25 | syl2anc | |
27 | 8 26 | jca | |
28 | 27 | rexlimdva2 | |
29 | 28 | reximdva | |
30 | 29 | imim2d | |
31 | 30 | ralimdv | |
32 | 31 | ralimdv | |
33 | 32 | imp | |
34 | isnrm2 | |
|
35 | 7 33 34 | sylanbrc | |
36 | 6 35 | impbii | |