Metamath Proof Explorer


Theorem isnrm3

Description: A topological space is normal iff any two disjoint closed sets are separated by open sets. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion isnrm3 JNrmJTopcClsdJdClsdJcd=xJyJcxdyxy=

Proof

Step Hyp Ref Expression
1 nrmtop JNrmJTop
2 nrmsep JNrmcClsdJdClsdJcd=xJyJcxdyxy=
3 2 3exp2 JNrmcClsdJdClsdJcd=xJyJcxdyxy=
4 3 impd JNrmcClsdJdClsdJcd=xJyJcxdyxy=
5 4 ralrimivv JNrmcClsdJdClsdJcd=xJyJcxdyxy=
6 1 5 jca JNrmJTopcClsdJdClsdJcd=xJyJcxdyxy=
7 simpl JTopcClsdJdClsdJcd=xJyJcxdyxy=JTop
8 simpr1 JTopxJyJcxdyxy=cx
9 simpr2 JTopxJyJcxdyxy=dy
10 sslin dyclsJxdclsJxy
11 9 10 syl JTopxJyJcxdyxy=clsJxdclsJxy
12 eqid J=J
13 12 opncld JTopyJJyClsdJ
14 13 ad4ant13 JTopxJyJcxdyxy=JyClsdJ
15 simpr3 JTopxJyJcxdyxy=xy=
16 simpllr JTopxJyJcxdyxy=xJ
17 elssuni xJxJ
18 reldisj xJxy=xJy
19 16 17 18 3syl JTopxJyJcxdyxy=xy=xJy
20 15 19 mpbid JTopxJyJcxdyxy=xJy
21 12 clsss2 JyClsdJxJyclsJxJy
22 ssdifin0 clsJxJyclsJxy=
23 21 22 syl JyClsdJxJyclsJxy=
24 14 20 23 syl2anc JTopxJyJcxdyxy=clsJxy=
25 sseq0 clsJxdclsJxyclsJxy=clsJxd=
26 11 24 25 syl2anc JTopxJyJcxdyxy=clsJxd=
27 8 26 jca JTopxJyJcxdyxy=cxclsJxd=
28 27 rexlimdva2 JTopxJyJcxdyxy=cxclsJxd=
29 28 reximdva JTopxJyJcxdyxy=xJcxclsJxd=
30 29 imim2d JTopcd=xJyJcxdyxy=cd=xJcxclsJxd=
31 30 ralimdv JTopdClsdJcd=xJyJcxdyxy=dClsdJcd=xJcxclsJxd=
32 31 ralimdv JTopcClsdJdClsdJcd=xJyJcxdyxy=cClsdJdClsdJcd=xJcxclsJxd=
33 32 imp JTopcClsdJdClsdJcd=xJyJcxdyxy=cClsdJdClsdJcd=xJcxclsJxd=
34 isnrm2 JNrmJTopcClsdJdClsdJcd=xJcxclsJxd=
35 7 33 34 sylanbrc JTopcClsdJdClsdJcd=xJyJcxdyxy=JNrm
36 6 35 impbii JNrmJTopcClsdJdClsdJcd=xJyJcxdyxy=