Metamath Proof Explorer


Theorem cnrmi

Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion cnrmi JCNrmAVJ𝑡ANrm

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 restin JCNrmAVJ𝑡A=J𝑡AJ
3 oveq2 x=AJJ𝑡x=J𝑡AJ
4 3 eleq1d x=AJJ𝑡xNrmJ𝑡AJNrm
5 1 iscnrm JCNrmJTopx𝒫JJ𝑡xNrm
6 5 simprbi JCNrmx𝒫JJ𝑡xNrm
7 6 adantr JCNrmAVx𝒫JJ𝑡xNrm
8 inss2 AJJ
9 inex1g AVAJV
10 elpwg AJVAJ𝒫JAJJ
11 9 10 syl AVAJ𝒫JAJJ
12 8 11 mpbiri AVAJ𝒫J
13 12 adantl JCNrmAVAJ𝒫J
14 4 7 13 rspcdva JCNrmAVJ𝑡AJNrm
15 2 14 eqeltrd JCNrmAVJ𝑡ANrm