Metamath Proof Explorer


Definition df-nrm

Description: Define normal spaces. A space is normal if disjoint closed sets can be separated by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion df-nrm Nrm=jTop|xjyClsdj𝒫xzjyzclsjzx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnrm classNrm
1 vj setvarj
2 ctop classTop
3 vx setvarx
4 1 cv setvarj
5 vy setvary
6 ccld classClsd
7 4 6 cfv classClsdj
8 3 cv setvarx
9 8 cpw class𝒫x
10 7 9 cin classClsdj𝒫x
11 vz setvarz
12 5 cv setvary
13 11 cv setvarz
14 12 13 wss wffyz
15 ccl classcls
16 4 15 cfv classclsj
17 13 16 cfv classclsjz
18 17 8 wss wffclsjzx
19 14 18 wa wffyzclsjzx
20 19 11 4 wrex wffzjyzclsjzx
21 20 5 10 wral wffyClsdj𝒫xzjyzclsjzx
22 21 3 4 wral wffxjyClsdj𝒫xzjyzclsjzx
23 22 1 2 crab classjTop|xjyClsdj𝒫xzjyzclsjzx
24 0 23 wceq wffNrm=jTop|xjyClsdj𝒫xzjyzclsjzx