Metamath Proof Explorer


Theorem iscnrm

Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis ist0.1 X=J
Assertion iscnrm JCNrmJTopx𝒫XJ𝑡xNrm

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 unieq j=Jj=J
3 2 1 eqtr4di j=Jj=X
4 3 pweqd j=J𝒫j=𝒫X
5 oveq1 j=Jj𝑡x=J𝑡x
6 5 eleq1d j=Jj𝑡xNrmJ𝑡xNrm
7 4 6 raleqbidv j=Jx𝒫jj𝑡xNrmx𝒫XJ𝑡xNrm
8 df-cnrm CNrm=jTop|x𝒫jj𝑡xNrm
9 7 8 elrab2 JCNrmJTopx𝒫XJ𝑡xNrm