Metamath Proof Explorer


Theorem ssdifin0

Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssdifin0 ABCAC=

Proof

Step Hyp Ref Expression
1 ssrin ABCACBCC
2 disjdifr BCC=
3 sseq0 ACBCCBCC=AC=
4 1 2 3 sylancl ABCAC=