Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnrm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop | |
|
2 | nrmsep2 | |
|
3 | 2 | 3exp2 | |
4 | 3 | impd | |
5 | 4 | ralrimivv | |
6 | 1 5 | jca | |
7 | simpl | |
|
8 | eqid | |
|
9 | 8 | opncld | |
10 | 9 | adantr | |
11 | ineq2 | |
|
12 | 11 | eqeq1d | |
13 | ineq2 | |
|
14 | 13 | eqeq1d | |
15 | 14 | anbi2d | |
16 | 15 | rexbidv | |
17 | 12 16 | imbi12d | |
18 | 17 | rspcv | |
19 | 10 18 | syl | |
20 | inssdif0 | |
|
21 | 8 | cldss | |
22 | 21 | adantl | |
23 | df-ss | |
|
24 | 22 23 | sylib | |
25 | 24 | sseq1d | |
26 | 20 25 | bitr3id | |
27 | inssdif0 | |
|
28 | simpll | |
|
29 | elssuni | |
|
30 | 8 | clsss3 | |
31 | 28 29 30 | syl2an | |
32 | df-ss | |
|
33 | 31 32 | sylib | |
34 | 33 | sseq1d | |
35 | 27 34 | bitr3id | |
36 | 35 | anbi2d | |
37 | 36 | rexbidva | |
38 | 26 37 | imbi12d | |
39 | 19 38 | sylibd | |
40 | 39 | ralimdva | |
41 | elin | |
|
42 | velpw | |
|
43 | 42 | anbi2i | |
44 | 41 43 | bitri | |
45 | 44 | imbi1i | |
46 | impexp | |
|
47 | 45 46 | bitri | |
48 | 47 | ralbii2 | |
49 | 40 48 | imbitrrdi | |
50 | 49 | ralrimdva | |
51 | 50 | imp | |
52 | isnrm | |
|
53 | 7 51 52 | sylanbrc | |
54 | 6 53 | impbii | |