| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrmtop |
|
| 2 |
|
nrmsep2 |
|
| 3 |
2
|
3exp2 |
|
| 4 |
3
|
impd |
|
| 5 |
4
|
ralrimivv |
|
| 6 |
1 5
|
jca |
|
| 7 |
|
simpl |
|
| 8 |
|
eqid |
|
| 9 |
8
|
opncld |
|
| 10 |
9
|
adantr |
|
| 11 |
|
ineq2 |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
|
ineq2 |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
14
|
anbi2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
12 16
|
imbi12d |
|
| 18 |
17
|
rspcv |
|
| 19 |
10 18
|
syl |
|
| 20 |
|
inssdif0 |
|
| 21 |
8
|
cldss |
|
| 22 |
21
|
adantl |
|
| 23 |
|
dfss2 |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
sseq1d |
|
| 26 |
20 25
|
bitr3id |
|
| 27 |
|
inssdif0 |
|
| 28 |
|
simpll |
|
| 29 |
|
elssuni |
|
| 30 |
8
|
clsss3 |
|
| 31 |
28 29 30
|
syl2an |
|
| 32 |
|
dfss2 |
|
| 33 |
31 32
|
sylib |
|
| 34 |
33
|
sseq1d |
|
| 35 |
27 34
|
bitr3id |
|
| 36 |
35
|
anbi2d |
|
| 37 |
36
|
rexbidva |
|
| 38 |
26 37
|
imbi12d |
|
| 39 |
19 38
|
sylibd |
|
| 40 |
39
|
ralimdva |
|
| 41 |
|
elin |
|
| 42 |
|
velpw |
|
| 43 |
42
|
anbi2i |
|
| 44 |
41 43
|
bitri |
|
| 45 |
44
|
imbi1i |
|
| 46 |
|
impexp |
|
| 47 |
45 46
|
bitri |
|
| 48 |
47
|
ralbii2 |
|
| 49 |
40 48
|
imbitrrdi |
|
| 50 |
49
|
ralrimdva |
|
| 51 |
50
|
imp |
|
| 52 |
|
isnrm |
|
| 53 |
7 51 52
|
sylanbrc |
|
| 54 |
6 53
|
impbii |
|