Metamath Proof Explorer


Theorem isnrm2

Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion isnrm2 J Nrm J Top c Clsd J d Clsd J c d = o J c o cls J o d =

Proof

Step Hyp Ref Expression
1 nrmtop J Nrm J Top
2 nrmsep2 J Nrm c Clsd J d Clsd J c d = o J c o cls J o d =
3 2 3exp2 J Nrm c Clsd J d Clsd J c d = o J c o cls J o d =
4 3 impd J Nrm c Clsd J d Clsd J c d = o J c o cls J o d =
5 4 ralrimivv J Nrm c Clsd J d Clsd J c d = o J c o cls J o d =
6 1 5 jca J Nrm J Top c Clsd J d Clsd J c d = o J c o cls J o d =
7 simpl J Top c Clsd J d Clsd J c d = o J c o cls J o d = J Top
8 eqid J = J
9 8 opncld J Top x J J x Clsd J
10 9 adantr J Top x J c Clsd J J x Clsd J
11 ineq2 d = J x c d = c J x
12 11 eqeq1d d = J x c d = c J x =
13 ineq2 d = J x cls J o d = cls J o J x
14 13 eqeq1d d = J x cls J o d = cls J o J x =
15 14 anbi2d d = J x c o cls J o d = c o cls J o J x =
16 15 rexbidv d = J x o J c o cls J o d = o J c o cls J o J x =
17 12 16 imbi12d d = J x c d = o J c o cls J o d = c J x = o J c o cls J o J x =
18 17 rspcv J x Clsd J d Clsd J c d = o J c o cls J o d = c J x = o J c o cls J o J x =
19 10 18 syl J Top x J c Clsd J d Clsd J c d = o J c o cls J o d = c J x = o J c o cls J o J x =
20 inssdif0 c J x c J x =
21 8 cldss c Clsd J c J
22 21 adantl J Top x J c Clsd J c J
23 df-ss c J c J = c
24 22 23 sylib J Top x J c Clsd J c J = c
25 24 sseq1d J Top x J c Clsd J c J x c x
26 20 25 bitr3id J Top x J c Clsd J c J x = c x
27 inssdif0 cls J o J x cls J o J x =
28 simpll J Top x J c Clsd J J Top
29 elssuni o J o J
30 8 clsss3 J Top o J cls J o J
31 28 29 30 syl2an J Top x J c Clsd J o J cls J o J
32 df-ss cls J o J cls J o J = cls J o
33 31 32 sylib J Top x J c Clsd J o J cls J o J = cls J o
34 33 sseq1d J Top x J c Clsd J o J cls J o J x cls J o x
35 27 34 bitr3id J Top x J c Clsd J o J cls J o J x = cls J o x
36 35 anbi2d J Top x J c Clsd J o J c o cls J o J x = c o cls J o x
37 36 rexbidva J Top x J c Clsd J o J c o cls J o J x = o J c o cls J o x
38 26 37 imbi12d J Top x J c Clsd J c J x = o J c o cls J o J x = c x o J c o cls J o x
39 19 38 sylibd J Top x J c Clsd J d Clsd J c d = o J c o cls J o d = c x o J c o cls J o x
40 39 ralimdva J Top x J c Clsd J d Clsd J c d = o J c o cls J o d = c Clsd J c x o J c o cls J o x
41 elin c Clsd J 𝒫 x c Clsd J c 𝒫 x
42 velpw c 𝒫 x c x
43 42 anbi2i c Clsd J c 𝒫 x c Clsd J c x
44 41 43 bitri c Clsd J 𝒫 x c Clsd J c x
45 44 imbi1i c Clsd J 𝒫 x o J c o cls J o x c Clsd J c x o J c o cls J o x
46 impexp c Clsd J c x o J c o cls J o x c Clsd J c x o J c o cls J o x
47 45 46 bitri c Clsd J 𝒫 x o J c o cls J o x c Clsd J c x o J c o cls J o x
48 47 ralbii2 c Clsd J 𝒫 x o J c o cls J o x c Clsd J c x o J c o cls J o x
49 40 48 syl6ibr J Top x J c Clsd J d Clsd J c d = o J c o cls J o d = c Clsd J 𝒫 x o J c o cls J o x
50 49 ralrimdva J Top c Clsd J d Clsd J c d = o J c o cls J o d = x J c Clsd J 𝒫 x o J c o cls J o x
51 50 imp J Top c Clsd J d Clsd J c d = o J c o cls J o d = x J c Clsd J 𝒫 x o J c o cls J o x
52 isnrm J Nrm J Top x J c Clsd J 𝒫 x o J c o cls J o x
53 7 51 52 sylanbrc J Top c Clsd J d Clsd J c d = o J c o cls J o d = J Nrm
54 6 53 impbii J Nrm J Top c Clsd J d Clsd J c d = o J c o cls J o d =