Step |
Hyp |
Ref |
Expression |
1 |
|
nrmtop |
|
2 |
1
|
ad2antrr |
|
3 |
|
elssuni |
|
4 |
3
|
ad2antrl |
|
5 |
|
eqid |
|
6 |
5
|
clscld |
|
7 |
2 4 6
|
syl2anc |
|
8 |
5
|
cldopn |
|
9 |
7 8
|
syl |
|
10 |
|
simprrl |
|
11 |
|
incom |
|
12 |
|
simprrr |
|
13 |
11 12
|
eqtrid |
|
14 |
|
simplr2 |
|
15 |
5
|
cldss |
|
16 |
|
reldisj |
|
17 |
14 15 16
|
3syl |
|
18 |
13 17
|
mpbid |
|
19 |
5
|
sscls |
|
20 |
2 4 19
|
syl2anc |
|
21 |
20
|
ssrind |
|
22 |
|
disjdif |
|
23 |
|
sseq0 |
|
24 |
21 22 23
|
sylancl |
|
25 |
|
sseq2 |
|
26 |
|
ineq2 |
|
27 |
26
|
eqeq1d |
|
28 |
25 27
|
3anbi23d |
|
29 |
28
|
rspcev |
|
30 |
9 10 18 24 29
|
syl13anc |
|
31 |
|
nrmsep2 |
|
32 |
30 31
|
reximddv |
|