Step |
Hyp |
Ref |
Expression |
1 |
|
isnrm3 |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
2 |
|
id |
⊢ ( 𝐽 ∈ Top → 𝐽 ∈ Top ) |
3 |
2
|
sepnsepo |
⊢ ( 𝐽 ∈ Top → ( ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝐽 ∈ Top → ( ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
5 |
4
|
2ralbidv |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
7 |
1 6
|
bitr4i |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) |