Metamath Proof Explorer


Theorem isnrm4

Description: A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Assertion isnrm4 ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 isnrm3 ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥𝐽𝑦𝐽 ( 𝑐𝑥𝑑𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) ) )
2 id ( 𝐽 ∈ Top → 𝐽 ∈ Top )
3 2 sepnsepo ( 𝐽 ∈ Top → ( ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ↔ ∃ 𝑥𝐽𝑦𝐽 ( 𝑐𝑥𝑑𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) )
4 3 imbi2d ( 𝐽 ∈ Top → ( ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ) ↔ ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥𝐽𝑦𝐽 ( 𝑐𝑥𝑑𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) ) )
5 4 2ralbidv ( 𝐽 ∈ Top → ( ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ) ↔ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥𝐽𝑦𝐽 ( 𝑐𝑥𝑑𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) ) )
6 5 pm5.32i ( ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥𝐽𝑦𝐽 ( 𝑐𝑥𝑑𝑦 ∧ ( 𝑥𝑦 ) = ∅ ) ) ) )
7 1 6 bitr4i ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝐽 ) ( ( 𝑐𝑑 ) = ∅ → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑐 ) ∃ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑑 ) ( 𝑥𝑦 ) = ∅ ) ) )