Step |
Hyp |
Ref |
Expression |
1 |
|
isnrm3 |
⊢ ( 𝑗 ∈ Nrm ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝑗 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝑗 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝑗 ∃ 𝑦 ∈ 𝑗 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) ) |
2 |
1
|
abbi2i |
⊢ Nrm = { 𝑗 ∣ ( 𝑗 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝑗 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝑗 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝑗 ∃ 𝑦 ∈ 𝑗 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) } |
3 |
|
df-rab |
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑐 ∈ ( Clsd ‘ 𝑗 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝑗 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝑗 ∃ 𝑦 ∈ 𝑗 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) } = { 𝑗 ∣ ( 𝑗 ∈ Top ∧ ∀ 𝑐 ∈ ( Clsd ‘ 𝑗 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝑗 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝑗 ∃ 𝑦 ∈ 𝑗 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) ) } |
4 |
2 3
|
eqtr4i |
⊢ Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑐 ∈ ( Clsd ‘ 𝑗 ) ∀ 𝑑 ∈ ( Clsd ‘ 𝑗 ) ( ( 𝑐 ∩ 𝑑 ) = ∅ → ∃ 𝑥 ∈ 𝑗 ∃ 𝑦 ∈ 𝑗 ( 𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) } |