Metamath Proof Explorer


Theorem iscnrm3lem1

Description: Lemma for iscnrm3 . Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024)

Ref Expression
Assertion iscnrm3lem1 J Top x A φ x A J 𝑡 x Top φ

Proof

Step Hyp Ref Expression
1 resttop J Top x A J 𝑡 x Top
2 1 biantrurd J Top x A φ J 𝑡 x Top φ
3 2 ralbidva J Top x A φ x A J 𝑡 x Top φ