Metamath Proof Explorer


Theorem iscnrm3

Description: A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Assertion iscnrm3 JCNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 iscnrm JCNrmJTopz𝒫JJ𝑡zNrm
3 iscnrm3lem1 JTopz𝒫JcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=z𝒫JJ𝑡zTopcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=
4 isnrm3 J𝑡zNrmJ𝑡zTopcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=
5 4 ralbii z𝒫JJ𝑡zNrmz𝒫JJ𝑡zTopcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=
6 3 5 bitr4di JTopz𝒫JcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=z𝒫JJ𝑡zNrm
7 iscnrm3r JTopz𝒫JcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=s𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
8 iscnrm3l JTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=z𝒫JcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=
9 7 8 iscnrm3lem2 JTopz𝒫JcClsdJ𝑡zdClsdJ𝑡zcd=lJ𝑡zkJ𝑡zcldklk=s𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
10 6 9 bitr3d JTopz𝒫JJ𝑡zNrms𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
11 10 pm5.32i JTopz𝒫JJ𝑡zNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=
12 2 11 bitri JCNrmJTops𝒫Jt𝒫JsclsJt=clsJst=nJmJsntmnm=