Description: Lemma for iscnrm3 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscnrm3lem2.1 | |
|
iscnrm3lem2.2 | |
||
Assertion | iscnrm3lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3lem2.1 | |
|
2 | iscnrm3lem2.2 | |
|
3 | 2ax5 | |
|
4 | r3al | |
|
5 | 4 1 | biimtrrid | |
6 | 5 | 2alimdv | |
7 | 3 6 | syl5 | |
8 | 2ax5 | |
|
9 | 8 | alrimiv | |
10 | r2al | |
|
11 | 10 2 | biimtrrid | |
12 | 11 | 2alimdv | |
13 | 12 | alimdv | |
14 | 9 13 | syl5 | |
15 | 7 14 | impbid | |
16 | 15 4 10 | 3bitr4g | |