Description: Lemma for iscnrm3 . Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscnrm3lem1 | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐽 ↾t 𝑥 ) ∈ Top ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐴 ) → ( 𝐽 ↾t 𝑥 ) ∈ Top ) | |
| 2 | 1 | biantrurd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ ( ( 𝐽 ↾t 𝑥 ) ∈ Top ∧ 𝜑 ) ) ) |
| 3 | 2 | ralbidva | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐽 ↾t 𝑥 ) ∈ Top ∧ 𝜑 ) ) ) |