Step |
Hyp |
Ref |
Expression |
1 |
|
dfon3 |
|- On = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) |
2 |
|
df-ima |
|- ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) |
3 |
|
df-res |
|- ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) |
4 |
|
indif1 |
|- ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
5 |
3 4
|
eqtri |
|- ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
6 |
5
|
rneqi |
|- ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
7 |
2 6
|
eqtri |
|- ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) |
8 |
7
|
difeq2i |
|- ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) |
9 |
1 8
|
eqtr4i |
|- On = ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) |