| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfon3 |  |-  On = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) | 
						
							| 2 |  | df-ima |  |-  ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) | 
						
							| 3 |  | df-res |  |-  ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) | 
						
							| 4 |  | indif1 |  |-  ( ( SSet \ ( _I u. _E ) ) i^i ( Trans X. _V ) ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) | 
						
							| 5 | 3 4 | eqtri |  |-  ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) | 
						
							| 6 | 5 | rneqi |  |-  ran ( ( SSet \ ( _I u. _E ) ) |` Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) | 
						
							| 7 | 2 6 | eqtri |  |-  ( ( SSet \ ( _I u. _E ) ) " Trans ) = ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) | 
						
							| 8 | 7 | difeq2i |  |-  ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) = ( _V \ ran ( ( SSet i^i ( Trans X. _V ) ) \ ( _I u. _E ) ) ) | 
						
							| 9 | 1 8 | eqtr4i |  |-  On = ( _V \ ( ( SSet \ ( _I u. _E ) ) " Trans ) ) |