Step |
Hyp |
Ref |
Expression |
1 |
|
dfon3 |
⊢ On = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
2 |
|
df-ima |
⊢ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) = ran ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) |
3 |
|
df-res |
⊢ ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ( ( SSet ∖ ( I ∪ E ) ) ∩ ( Trans × V ) ) |
4 |
|
indif1 |
⊢ ( ( SSet ∖ ( I ∪ E ) ) ∩ ( Trans × V ) ) = ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
5 |
3 4
|
eqtri |
⊢ ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
6 |
5
|
rneqi |
⊢ ran ( ( SSet ∖ ( I ∪ E ) ) ↾ Trans ) = ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
7 |
2 6
|
eqtri |
⊢ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) = ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) |
8 |
7
|
difeq2i |
⊢ ( V ∖ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) ) = ( V ∖ ran ( ( SSet ∩ ( Trans × V ) ) ∖ ( I ∪ E ) ) ) |
9 |
1 8
|
eqtr4i |
⊢ On = ( V ∖ ( ( SSet ∖ ( I ∪ E ) ) “ Trans ) ) |