Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrefrel5 | |- ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrefrel2 | |- ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) |
|
2 | ref5 | |- ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> A. x e. ( dom R i^i ran R ) x R x ) |
|
3 | 1 2 | bianbi | |- ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) ) |