Metamath Proof Explorer


Theorem dfrefrel5

Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023)

Ref Expression
Assertion dfrefrel5
|- ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 dfrefrel2
 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )
2 ref5
 |-  ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> A. x e. ( dom R i^i ran R ) x R x )
3 1 2 bianbi
 |-  ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) )