Step |
Hyp |
Ref |
Expression |
1 |
|
dfrefrels2 |
|- RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } |
2 |
|
dmeq |
|- ( r = R -> dom r = dom R ) |
3 |
|
rneq |
|- ( r = R -> ran r = ran R ) |
4 |
2 3
|
xpeq12d |
|- ( r = R -> ( dom r X. ran r ) = ( dom R X. ran R ) ) |
5 |
4
|
ineq2d |
|- ( r = R -> ( _I i^i ( dom r X. ran r ) ) = ( _I i^i ( dom R X. ran R ) ) ) |
6 |
|
id |
|- ( r = R -> r = R ) |
7 |
5 6
|
sseq12d |
|- ( r = R -> ( ( _I i^i ( dom r X. ran r ) ) C_ r <-> ( _I i^i ( dom R X. ran R ) ) C_ R ) ) |
8 |
1 7
|
rabeqel |
|- ( R e. RefRels <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ R e. Rels ) ) |