Step |
Hyp |
Ref |
Expression |
1 |
|
dfrefrels3 |
|- RefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x = y -> x r y ) } |
2 |
|
dmeq |
|- ( r = R -> dom r = dom R ) |
3 |
|
rneq |
|- ( r = R -> ran r = ran R ) |
4 |
|
breq |
|- ( r = R -> ( x r y <-> x R y ) ) |
5 |
4
|
imbi2d |
|- ( r = R -> ( ( x = y -> x r y ) <-> ( x = y -> x R y ) ) ) |
6 |
3 5
|
raleqbidv |
|- ( r = R -> ( A. y e. ran r ( x = y -> x r y ) <-> A. y e. ran R ( x = y -> x R y ) ) ) |
7 |
2 6
|
raleqbidv |
|- ( r = R -> ( A. x e. dom r A. y e. ran r ( x = y -> x r y ) <-> A. x e. dom R A. y e. ran R ( x = y -> x R y ) ) ) |
8 |
1 7
|
rabeqel |
|- ( R e. RefRels <-> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) /\ R e. Rels ) ) |